Physical exercise shapes the mouse brain epigenome.
Endurance training
Epigenome
Exercise
Hippocampus
Neuroplasticity
Resistance training
Transcriptome
Journal
Molecular metabolism
ISSN: 2212-8778
Titre abrégé: Mol Metab
Pays: Germany
ID NLM: 101605730
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
received:
30
09
2021
revised:
09
11
2021
accepted:
14
11
2021
pubmed:
22
11
2021
medline:
25
3
2022
entrez:
21
11
2021
Statut:
ppublish
Résumé
To analyze the genome-wide epigenomic and transcriptomic changes induced by long term resistance or endurance training in the hippocampus of wild-type mice. We performed whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of mice hippocampus after 4 weeks of specific training. In addition, we used a novel object recognition test before and after the intervention to determine whether the exercise led to an improvement in cognitive function. Although the majority of DNA methylation changes identified in this study were training-model specific, most were associated with hypomethylation and were enriched in similar histone marks, chromatin states, and transcription factor biding sites. It is worth highlighting the significant association found between the loss of DNA methylation in Tet1 binding sites and gene expression changes, indicating the importance of these epigenomic changes in transcriptional regulation. However, endurance and resistance training activate different gene pathways, those being associated with neuroplasticity in the case of endurance exercise, and interferon response pathways in the case of resistance exercise, which also appears to be associated with improved learning and memory functions. Our results help both understand the molecular mechanisms by which different exercise models exert beneficial effects for brain health and provide new potential therapeutic targets for future research.
Identifiants
pubmed: 34801767
pii: S2212-8778(21)00256-8
doi: 10.1016/j.molmet.2021.101398
pmc: PMC8661702
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
101398Informations de copyright
Copyright © 2021 The Authors. Published by Elsevier GmbH.. All rights reserved.
Références
J Appl Physiol (1985). 2015 Apr 15;118(8):1059-66
pubmed: 25678701
Nucleic Acids Res. 2017 Jan 4;45(D1):D61-D67
pubmed: 27924024
Nucleic Acids Res. 2018 Jul 2;46(W1):W60-W64
pubmed: 29912392
Front Neurol. 2018 Jan 23;9:8
pubmed: 29410649
Nat Rev Genet. 2012 Jan 04;13(2):97-109
pubmed: 22215131
Nature. 2020 Jul;583(7818):752-759
pubmed: 32728242
Neuroscience. 2011 Sep 29;192:580-7
pubmed: 21745541
Compr Physiol. 2012 Apr;2(2):1143-211
pubmed: 23798298
Cell. 2014 Nov 6;159(4):738-49
pubmed: 25417152
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3017-22
pubmed: 21282661
Nat Protoc. 2017 Dec;12(12):2478-2492
pubmed: 29120462
Med Sci Sports Exerc. 2020 Mar;52(3):589-597
pubmed: 31652233
Br J Sports Med. 2015 Feb;49(4):248-54
pubmed: 24711660
Mol Biol Evol. 2021 Jul 29;38(8):3415-3435
pubmed: 33871658
Clin Epigenetics. 2019 Jun 19;11(1):91
pubmed: 31217032
Cold Spring Harb Perspect Med. 2018 Jun 1;8(6):
pubmed: 28490537
J Clin Invest. 2007 Jun;117(6):1595-604
pubmed: 17549256
Clin Epigenetics. 2018 Sep 12;10(1):116
pubmed: 30208929
Mol Neurobiol. 2019 Dec;56(12):8408-8419
pubmed: 31250382
Int J Dev Neurosci. 2013 Oct;31(6):382-90
pubmed: 23178748
Sci Rep. 2020 Sep 14;10(1):15048
pubmed: 32929110
Physiology (Bethesda). 2013 Sep;28(5):330-58
pubmed: 23997192
Int J Mol Sci. 2021 Apr 14;22(8):
pubmed: 33919972
Curr Biol. 2011 Jan 11;21(1):65-71
pubmed: 21194951
Nature. 2007 Jan 11;445(7124):168-76
pubmed: 17151600
Physiol Behav. 2009 Oct 19;98(4):433-40
pubmed: 19619567
Cell Tissue Res. 2015 Jan;359(1):65-85
pubmed: 25367430
Brain Neurosci Adv. 2020 Dec 18;4:2398212820979802
pubmed: 33415308
J Appl Physiol (1985). 2002 Oct;93(4):1301-9
pubmed: 12235029
FASEB J. 2013 Oct;27(10):4184-93
pubmed: 23825228
Arch Neurol. 2011 Sep;68(9):1185-90
pubmed: 21555601
Appl Physiol Nutr Metab. 2018 Aug;43(8):833-837
pubmed: 29562142
N Engl J Med. 2008 Mar 13;358(11):1148-59
pubmed: 18337604
Cancer Res. 2013 Jan 1;73(1):395-405
pubmed: 23108143
Cell Death Dis. 2021 Mar 22;12(4):305
pubmed: 33753728
Brain Behav Immun. 2011 Jul;25(5):1008-16
pubmed: 21093580
Scand J Med Sci Sports. 2020 Feb;30(2):238-253
pubmed: 31650583
Nat Neurosci. 2018 Oct;21(10):1359-1369
pubmed: 30258234
Front Physiol. 2016 Aug 29;7:372
pubmed: 27621709
Neurosci Lett. 2016 Nov 10;634:19-24
pubmed: 27717826
J Alzheimers Dis. 2019;68(1):39-64
pubmed: 30776004
J Vis Exp. 2017 Aug 30;(126):
pubmed: 28892027
J Sport Health Sci. 2019 May;8(3):201-217
pubmed: 31193280
Sports Med. 2016 May;46(5):687-98
pubmed: 26780346
Cell Syst. 2015 Dec 23;1(6):417-425
pubmed: 26771021
J Vis Exp. 2014 Aug 14;(90):e51846
pubmed: 25145813
Genome Biol. 2015 May 21;16:105
pubmed: 25994056
Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9391-6
pubmed: 18599438
Osteoporos Int. 2006 Jan;17(1):133-42
pubmed: 16096715
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
pubmed: 16199517
Neurobiol Learn Mem. 2013 Mar;101:94-102
pubmed: 23357282
Neurosci Biobehav Rev. 2017 Sep;80:443-456
pubmed: 28666827
Cell Metab. 2018 Jun 05;27(6):1176-1199
pubmed: 29874566
J Physiol. 2016 Aug 15;594(16):4485-98
pubmed: 27524792
Nat Rev Neurol. 2012 Mar 13;8(4):189-202
pubmed: 22410582
Nat Rev Neurosci. 2008 Jan;9(1):58-65
pubmed: 18094706
JAMA. 1989 Nov 3;262(17):2395-401
pubmed: 2795824
Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7778-83
pubmed: 9636227
Eur J Neurodegener Dis. 2012 Aug;1(2):195-211
pubmed: 26082912
Nucleic Acids Res. 2019 Jun 20;47(11):5587-5602
pubmed: 31049588
Nature. 2010 Mar 11;464(7286):306-10
pubmed: 20075857
Nucleic Acids Res. 2012 Jan;40(1):116-31
pubmed: 21911366
J Strength Cond Res. 2012 Mar;26(3):618-24
pubmed: 22067239
Neuron. 2013 Sep 18;79(6):1109-1122
pubmed: 24050401
Sports Med. 2018 Mar;48(3):499-505
pubmed: 29022275
Scand J Med Sci Sports. 2015 Dec;25 Suppl 3:1-72
pubmed: 26606383
Front Behav Neurosci. 2017 Oct 23;11:202
pubmed: 29123474