BST1 regulates nicotinamide riboside metabolism via its glycohydrolase and base-exchange activities.
A549 Cells
ADP-ribosyl Cyclase
/ genetics
Administration, Oral
Aging
/ drug effects
Animals
Antigens, CD
/ genetics
Dietary Supplements
GPI-Linked Proteins
/ genetics
Gastrointestinal Microbiome
Glycoside Hydrolases
/ genetics
Humans
Intestinal Mucosa
/ metabolism
Intestine, Small
/ metabolism
Mice
Mice, Knockout
Niacin
/ metabolism
Niacinamide
/ administration & dosage
Pentosyltransferases
/ genetics
Pyridinium Compounds
/ administration & dosage
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
19 11 2021
19 11 2021
Historique:
received:
11
12
2020
accepted:
04
11
2021
entrez:
20
11
2021
pubmed:
21
11
2021
medline:
24
12
2021
Statut:
epublish
Résumé
Nicotinamide riboside (NR) is one of the orally bioavailable NAD
Identifiants
pubmed: 34799586
doi: 10.1038/s41467-021-27080-3
pii: 10.1038/s41467-021-27080-3
pmc: PMC8604996
doi:
Substances chimiques
Antigens, CD
0
GPI-Linked Proteins
0
Pyridinium Compounds
0
nicotinamide-beta-riboside
0I8H2M0L7N
Niacinamide
25X51I8RD4
Niacin
2679MF687A
Pentosyltransferases
EC 2.4.2.-
Glycoside Hydrolases
EC 3.2.1.-
ADP-ribosyl Cyclase
EC 3.2.2.5
ADP-ribosyl cyclase 2
EC 3.2.2.5
nicotinate phosphoribosyltransferase
EC 6.3.4.21
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6767Informations de copyright
© 2021. The Author(s).
Références
Yaku, K., Okabe, K. & Nakagawa, T. NAD metabolism: Implications in aging and longevity. Ageing Res. Rev. 47, 1–17 (2018).
pubmed: 29883761
doi: 10.1016/j.arr.2018.05.006
Cantó, C., Menzies, K. J. & Auwerx, J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31–53 (2015).
pubmed: 26118927
pmcid: 4487780
doi: 10.1016/j.cmet.2015.05.023
Hogan, K. A., Chini, C. C. S. & Chini, E. N. The multi-faceted ecto-enzyme CD38: roles in immunomodulation, cancer, aging, and metabolic diseases. Front. Immunol. 10, 1187 (2019).
pubmed: 31214171
pmcid: 6555258
doi: 10.3389/fimmu.2019.01187
Bosch-Presegué, L. & Vaquero, A. Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J. 282, 1745–1767 (2015).
pubmed: 25223884
doi: 10.1111/febs.13053
Hikosaka K., Yaku K., Okabe K. & Nakagawa T. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr. Neurosci. 24, 371–383 (2021).
pubmed: 31280708
doi: 10.1080/1028415X.2019.1637504
Okabe, K., Yaku, K., Tobe, K. & Nakagawa, T. Implications of altered NAD metabolism in metabolic disorders. J. Biomed. Sci. 26, 34 (2019).
pubmed: 31078136
pmcid: 6511662
doi: 10.1186/s12929-019-0527-8
Chen, S. H. & Yu, X. Human DNA ligase IV is able to use NAD+ as an alternative adenylation donor for DNA ends ligation. Nucleic Acids Res. 47, 1321–1334 (2019).
pubmed: 30496552
doi: 10.1093/nar/gky1202
Bird, J. G. et al. The mechanism of RNA 5NA ligase IV is able to use NAD+ as an alterna. Nature 535, 444–447 (2016).
pubmed: 27383794
pmcid: 4961592
doi: 10.1038/nature18622
Bender, D. A. & Olufunwa, R. Utilization of tryptophan, nicotinamide and nicotinic acid as precursors for nicotinamide nucleotide synthesis in isolated rat liver cells. Br. J. Nutr. 59, 279–287 (1988).
pubmed: 2965917
doi: 10.1079/BJN19880035
Preiss, J. & Handler, P. Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J. Biol. Chem. 233, 488–492 (1958).
pubmed: 13563526
doi: 10.1016/S0021-9258(18)64789-1
Preiss, J. & Handler, P. Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J. Biol. Chem. 233, 493–500 (1958).
pubmed: 13563527
doi: 10.1016/S0021-9258(18)64790-8
Revollo, J. R., Grimm, A. A. & Imai, S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 279, 50754–50763 (2004).
pubmed: 15381699
doi: 10.1074/jbc.M408388200
Belenky, P. et al. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 129, 473–484 (2007).
pubmed: 17482543
doi: 10.1016/j.cell.2007.03.024
Mouchiroud, L. et al. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).
pubmed: 23870130
pmcid: 3753670
doi: 10.1016/j.cell.2013.06.016
Trammell, S. A. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun. 7, 12948 (2016).
pubmed: 27721479
pmcid: 5062546
doi: 10.1038/ncomms12948
Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).
pubmed: 21982712
pmcid: 3204926
doi: 10.1016/j.cmet.2011.08.014
Kulikova, V. et al. Generation, release, and uptake of the NAD precursor nicotinic acid riboside by human cells. J. Biol. Chem. 290, 27124–27137 (2015).
pubmed: 26385918
pmcid: 4646395
doi: 10.1074/jbc.M115.664458
Liu, L. et al. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab. 27, 1067–1080.e1065 (2018).
pubmed: 29685734
pmcid: 5932087
doi: 10.1016/j.cmet.2018.03.018
Tarragó, M. G. et al. A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD(+) Decline. Cell Metab. 27, 1081–1095.e1010 (2018).
pubmed: 29719225
pmcid: 5935140
doi: 10.1016/j.cmet.2018.03.016
Pirinen, E. et al. Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 19, 1034–1041 (2014).
pubmed: 24814482
pmcid: 4047186
doi: 10.1016/j.cmet.2014.04.002
Caton, P. W., Kieswich, J., Yaqoob, M. M., Holness, M. J. & Sugden, M. C. Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically-obese db/db mice. Diabetes Obes. Metab. 13, 1097–1104 (2011).
pubmed: 21733059
doi: 10.1111/j.1463-1326.2011.01466.x
Mercader, J. et al. Retinol-binding protein 4 and nicotinamide phosphoribosyltransferase/visfatin in rat obesity models. Horm. Metab. Res. 40, 467–472 (2008).
pubmed: 18401839
doi: 10.1055/s-2008-1065324
Yoshida, M. et al. Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell Metab. 30, 329–342.e325 (2019).
pubmed: 31204283
pmcid: 6687560
doi: 10.1016/j.cmet.2019.05.015
Mills, K. F. et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 24, 795–806 (2016).
pubmed: 28068222
pmcid: 5668137
doi: 10.1016/j.cmet.2016.09.013
Gomes, A. P. et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013).
pubmed: 24360282
pmcid: 4076149
doi: 10.1016/j.cell.2013.11.037
Rajman, L., Chwalek, K. & Sinclair, D. A. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 27, 529–547 (2018).
pubmed: 29514064
pmcid: 6342515
doi: 10.1016/j.cmet.2018.02.011
Elhassan, Y. S. et al. Nicotinamide riboside augments the aged human skeletal muscle NAD(+) metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 28, 1717–1728.e1716 (2019).
pubmed: 31412242
pmcid: 6702140
doi: 10.1016/j.celrep.2019.07.043
Costford, S. R. et al. Skeletal muscle overexpression of nicotinamide phosphoribosyl transferase in mice coupled with voluntary exercise augments exercise endurance. Mol. Metab. 7, 1–11 (2018).
pubmed: 29146412
doi: 10.1016/j.molmet.2017.10.012
Hou, Y. et al. NAD(+) supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl Acad. Sci. USA 115, E1876–e1885 (2018).
pubmed: 29432159
pmcid: 5828618
doi: 10.1073/pnas.1718819115
Remie, C. M. E. et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am. J. Clin. Nutr. 112, 413–426 (2020).
pubmed: 32320006
pmcid: 7398770
doi: 10.1093/ajcn/nqaa072
Ratajczak, J. et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat. Commun. 7, 13103 (2016).
pubmed: 27725675
pmcid: 5476803
doi: 10.1038/ncomms13103
Bieganowski, P. & Brenner, C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell 117, 495–502 (2004).
pubmed: 15137942
doi: 10.1016/S0092-8674(04)00416-7
Shats, I. et al. Bacteria boost mammalian host NAD metabolism by engaging the deamidated biosynthesis pathway. Cell Metab. 31, 564–579.e7 (2020).
pubmed: 32130883
pmcid: 7194078
doi: 10.1016/j.cmet.2020.02.001
Sauve, A. A., Munshi, C., Lee, H. C. & Schramm, V. L. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries. Biochemistry 37, 13239–13249 (1998).
pubmed: 9748331
doi: 10.1021/bi981248s
Itoh, M. et al. Molecular cloning of murine BST-1 having homology with CD38 and Aplysia ADP-ribosyl cyclase. Biochem. Biophys. Res. Commun. 203, 1309–1317 (1994).
pubmed: 7916574
doi: 10.1006/bbrc.1994.2325
Preugschat, F. et al. A pre-steady state and steady state kinetic analysis of the N-ribosyl hydrolase activity of hCD157. Arch. Biochem. Biophys. 564, 156–163 (2014).
pubmed: 25250980
doi: 10.1016/j.abb.2014.09.008
Hara, N. et al. Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency. J. Biol. Chem. 278, 10914–10921 (2003).
pubmed: 12547821
doi: 10.1074/jbc.M209203200
Aarhus, R., Graeff, R. M., Dickey, D. M., Walseth, T. F. & Lee, H. C. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J. Biol. Chem. 270, 30327–30333 (1995).
pubmed: 8530456
doi: 10.1074/jbc.270.51.30327
Higashida, H. et al. An immunohistochemical, enzymatic, and behavioral study of CD157/BST-1 as a neuroregulator. BMC Neurosci. 18, 35 (2017).
pubmed: 28340569
pmcid: 5366154
doi: 10.1186/s12868-017-0350-7
De Flora, A. et al. CD38 and ADP-ribosyl cyclase catalyze the synthesis of a dimeric ADP-ribose that potentiates the calcium-mobilizing activity of cyclic ADP-ribose. J. Biol. Chem. 272, 12945–12951 (1997).
pubmed: 9148900
doi: 10.1074/jbc.272.20.12945
Kim, L.-J. et al. Nicotinamide mononucleotide (NMN) deamidation by the gut microbiome and evidence for indirect upregulation of the NAD+ metabolome. bioRxiv. https://doi.org/10.1101/2020.09.10.289561 (2020).
Cantó, C. et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838–847 (2012).
pubmed: 22682224
pmcid: 3616313
doi: 10.1016/j.cmet.2012.04.022
Trammell, S. A. et al. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice. Sci. Rep. 6, 26933 (2016).
pubmed: 27230286
pmcid: 4882590
doi: 10.1038/srep26933
Sambeat, A. et al. Endogenous nicotinamide riboside metabolism protects against diet-induced liver damage. Nat. Commun. 10, 4291 (2019).
pubmed: 31541116
pmcid: 6754455
doi: 10.1038/s41467-019-12262-x
Sorrentino, V. et al. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 552, 187–193 (2017).
pubmed: 29211722
pmcid: 5730497
doi: 10.1038/nature25143
Cerutti, R. et al. NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 19, 1042–1049 (2014).
pubmed: 24814483
pmcid: 4051987
doi: 10.1016/j.cmet.2014.04.001
Khan, N. A. et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol. Med. 6, 721–731 (2014).
pubmed: 24711540
pmcid: 4203351
doi: 10.1002/emmm.201403943
Levine, D. C. et al. NAD(+) controls circadian reprogramming through PER2 nuclear translocation to counter aging. Mol. Cell 78, 835–849.e837 (2020).
pubmed: 32369735
pmcid: 7275919
doi: 10.1016/j.molcel.2020.04.010
Dollerup, O. L. et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am. J. Clin. Nutr. 108, 343–353 (2018).
pubmed: 29992272
doi: 10.1093/ajcn/nqy132
Conze, D., Brenner, C. & Kruger, C. L. Safety and metabolism of long-term administration of NIAGEN (nicotinamide riboside chloride) in a randomized, double-blind, placebo-controlled clinical trial of healthy overweight adults. Sci. Rep. 9, 9772 (2019).
pubmed: 31278280
pmcid: 6611812
doi: 10.1038/s41598-019-46120-z
Dollerup, O. L. et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J. Physiol. 598, 731–754 (2020).
pubmed: 31710095
doi: 10.1113/JP278752
Martens, C. R. et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy middle-aged and older adults. Nat. Commun. 9, 1286 (2018).
pubmed: 29599478
pmcid: 5876407
doi: 10.1038/s41467-018-03421-7
Dolopikou, C. F. et al. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study. Eur. J. Nutr. 59, 505–515 (2020).
pubmed: 30725213
doi: 10.1007/s00394-019-01919-4
Muraoka, O., Tanaka, H., Itoh, M., Ishihara, K. & Hirano, T. Genomic structure of human BST-1. Immunol. Lett. 54, 1–4 (1996).
pubmed: 9030974
doi: 10.1016/S0165-2478(96)02633-8
Nakagawara, K. et al. Assignment of CD38, the gene encoding human leukocyte antigen CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase), to chromosome 4p15. Cytogenet. Cell Genet. 69, 38–39 (1995).
pubmed: 7835083
doi: 10.1159/000133933
Harada, N. et al. Expression cloning of a cDNA encoding a novel murine B cell activation marker. Homology to human CD38. J. Immunol. 151, 3111–3118 (1993).
pubmed: 8376770
doi: 10.4049/jimmunol.151.6.3111
Fliegert, R., Gasser, A. & Guse, A. H. Regulation of calcium signalling by adenine-based second messengers. Biochem. Soc. Trans. 35, 109–114 (2007).
pubmed: 17233614
doi: 10.1042/BST0350109
Malavasi, F. et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev. 88, 841–886 (2008).
pubmed: 18626062
doi: 10.1152/physrev.00035.2007
Hussain, A. M., Lee, H. C. & Chang, C. F. Functional expression of secreted mouse BST-1 in yeast. Protein Expr. Purif. 12, 133–137 (1998).
pubmed: 9473467
doi: 10.1006/prep.1997.0811
Gerasimenko, M. et al. Nicotinamide riboside supplementation corrects deficits in oxytocin, sociability and anxiety of CD157 mutants in a mouse model of autism spectrum disorder. Sci. Rep. 10, 10035 (2020).
pubmed: 32572044
pmcid: 7308284
doi: 10.1038/s41598-019-57236-7
Yilmaz, Ö. H. et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490–495 (2012).
pubmed: 22722868
pmcid: 3387287
doi: 10.1038/nature11163
Igarashi, M. & Guarente, L. mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell 166, 436–450 (2016).
pubmed: 27345368
doi: 10.1016/j.cell.2016.05.044
Covarrubias, A. J. et al. Senescent cells promote tissue NAD(+) decline during ageing via the activation of CD38(+) macrophages. Nat. Metab. 2, 1265–1283 (2020).
pubmed: 33199924
pmcid: 7908681
doi: 10.1038/s42255-020-00305-3
Chini, C. C. S. et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD(+) and NMN levels. Nat. Metab. 2, 1284–1304 (2020).
pubmed: 33199925
doi: 10.1038/s42255-020-00298-z
Itoh, M. et al. Deletion of bone marrow stromal cell antigen-1 (CD157) gene impaired systemic thymus independent-2 antigen-induced IgG3 and mucosal TD antigen-elicited IgA responses. J. Immunol. 161, 3974–3983 (1998).
pubmed: 9780166
doi: 10.4049/jimmunol.161.8.3974
Kato, I. et al. CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i, and insulin secretion. J. Biol. Chem. 274, 1869–1872 (1999).
pubmed: 9890936
doi: 10.1074/jbc.274.4.1869
Miyao, N. et al. TBX5 R264K acts as a modifier to develop dilated cardiomyopathy in mice independently of T-box pathway. PLoS ONE 15, e0227393 (2020).
pubmed: 32236096
pmcid: 7112173
doi: 10.1371/journal.pone.0227393
Wakita, M. et al. Structural insights into selective interaction between type IIa receptor protein tyrosine phosphatases and Liprin-α. Nat. Commun. 11, 649 (2020).
pubmed: 32005855
pmcid: 6994669
doi: 10.1038/s41467-020-14516-5
Yaku, K., Okabe, K. & Nakagawa, T. Simultaneous measurement of NAD metabolome in aged mice tissue using liquid chromatography tandem-mass spectrometry. Biomed. Chromatogr. 32, e4205 (2018).
pubmed: 29424941
doi: 10.1002/bmc.4205