BST1 regulates nicotinamide riboside metabolism via its glycohydrolase and base-exchange activities.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
19 11 2021
Historique:
received: 11 12 2020
accepted: 04 11 2021
entrez: 20 11 2021
pubmed: 21 11 2021
medline: 24 12 2021
Statut: epublish

Résumé

Nicotinamide riboside (NR) is one of the orally bioavailable NAD

Identifiants

pubmed: 34799586
doi: 10.1038/s41467-021-27080-3
pii: 10.1038/s41467-021-27080-3
pmc: PMC8604996
doi:

Substances chimiques

Antigens, CD 0
GPI-Linked Proteins 0
Pyridinium Compounds 0
nicotinamide-beta-riboside 0I8H2M0L7N
Niacinamide 25X51I8RD4
Niacin 2679MF687A
Pentosyltransferases EC 2.4.2.-
Glycoside Hydrolases EC 3.2.1.-
ADP-ribosyl Cyclase EC 3.2.2.5
ADP-ribosyl cyclase 2 EC 3.2.2.5
nicotinate phosphoribosyltransferase EC 6.3.4.21

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6767

Informations de copyright

© 2021. The Author(s).

Références

Yaku, K., Okabe, K. & Nakagawa, T. NAD metabolism: Implications in aging and longevity. Ageing Res. Rev. 47, 1–17 (2018).
pubmed: 29883761 doi: 10.1016/j.arr.2018.05.006
Cantó, C., Menzies, K. J. & Auwerx, J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31–53 (2015).
pubmed: 26118927 pmcid: 4487780 doi: 10.1016/j.cmet.2015.05.023
Hogan, K. A., Chini, C. C. S. & Chini, E. N. The multi-faceted ecto-enzyme CD38: roles in immunomodulation, cancer, aging, and metabolic diseases. Front. Immunol. 10, 1187 (2019).
pubmed: 31214171 pmcid: 6555258 doi: 10.3389/fimmu.2019.01187
Bosch-Presegué, L. & Vaquero, A. Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J. 282, 1745–1767 (2015).
pubmed: 25223884 doi: 10.1111/febs.13053
Hikosaka K., Yaku K., Okabe K. & Nakagawa T. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr. Neurosci. 24, 371–383 (2021).
pubmed: 31280708 doi: 10.1080/1028415X.2019.1637504
Okabe, K., Yaku, K., Tobe, K. & Nakagawa, T. Implications of altered NAD metabolism in metabolic disorders. J. Biomed. Sci. 26, 34 (2019).
pubmed: 31078136 pmcid: 6511662 doi: 10.1186/s12929-019-0527-8
Chen, S. H. & Yu, X. Human DNA ligase IV is able to use NAD+ as an alternative adenylation donor for DNA ends ligation. Nucleic Acids Res. 47, 1321–1334 (2019).
pubmed: 30496552 doi: 10.1093/nar/gky1202
Bird, J. G. et al. The mechanism of RNA 5NA ligase IV is able to use NAD+ as an alterna. Nature 535, 444–447 (2016).
pubmed: 27383794 pmcid: 4961592 doi: 10.1038/nature18622
Bender, D. A. & Olufunwa, R. Utilization of tryptophan, nicotinamide and nicotinic acid as precursors for nicotinamide nucleotide synthesis in isolated rat liver cells. Br. J. Nutr. 59, 279–287 (1988).
pubmed: 2965917 doi: 10.1079/BJN19880035
Preiss, J. & Handler, P. Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J. Biol. Chem. 233, 488–492 (1958).
pubmed: 13563526 doi: 10.1016/S0021-9258(18)64789-1
Preiss, J. & Handler, P. Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J. Biol. Chem. 233, 493–500 (1958).
pubmed: 13563527 doi: 10.1016/S0021-9258(18)64790-8
Revollo, J. R., Grimm, A. A. & Imai, S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 279, 50754–50763 (2004).
pubmed: 15381699 doi: 10.1074/jbc.M408388200
Belenky, P. et al. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 129, 473–484 (2007).
pubmed: 17482543 doi: 10.1016/j.cell.2007.03.024
Mouchiroud, L. et al. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).
pubmed: 23870130 pmcid: 3753670 doi: 10.1016/j.cell.2013.06.016
Trammell, S. A. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun. 7, 12948 (2016).
pubmed: 27721479 pmcid: 5062546 doi: 10.1038/ncomms12948
Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).
pubmed: 21982712 pmcid: 3204926 doi: 10.1016/j.cmet.2011.08.014
Kulikova, V. et al. Generation, release, and uptake of the NAD precursor nicotinic acid riboside by human cells. J. Biol. Chem. 290, 27124–27137 (2015).
pubmed: 26385918 pmcid: 4646395 doi: 10.1074/jbc.M115.664458
Liu, L. et al. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab. 27, 1067–1080.e1065 (2018).
pubmed: 29685734 pmcid: 5932087 doi: 10.1016/j.cmet.2018.03.018
Tarragó, M. G. et al. A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD(+) Decline. Cell Metab. 27, 1081–1095.e1010 (2018).
pubmed: 29719225 pmcid: 5935140 doi: 10.1016/j.cmet.2018.03.016
Pirinen, E. et al. Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 19, 1034–1041 (2014).
pubmed: 24814482 pmcid: 4047186 doi: 10.1016/j.cmet.2014.04.002
Caton, P. W., Kieswich, J., Yaqoob, M. M., Holness, M. J. & Sugden, M. C. Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically-obese db/db mice. Diabetes Obes. Metab. 13, 1097–1104 (2011).
pubmed: 21733059 doi: 10.1111/j.1463-1326.2011.01466.x
Mercader, J. et al. Retinol-binding protein 4 and nicotinamide phosphoribosyltransferase/visfatin in rat obesity models. Horm. Metab. Res. 40, 467–472 (2008).
pubmed: 18401839 doi: 10.1055/s-2008-1065324
Yoshida, M. et al. Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell Metab. 30, 329–342.e325 (2019).
pubmed: 31204283 pmcid: 6687560 doi: 10.1016/j.cmet.2019.05.015
Mills, K. F. et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 24, 795–806 (2016).
pubmed: 28068222 pmcid: 5668137 doi: 10.1016/j.cmet.2016.09.013
Gomes, A. P. et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013).
pubmed: 24360282 pmcid: 4076149 doi: 10.1016/j.cell.2013.11.037
Rajman, L., Chwalek, K. & Sinclair, D. A. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 27, 529–547 (2018).
pubmed: 29514064 pmcid: 6342515 doi: 10.1016/j.cmet.2018.02.011
Elhassan, Y. S. et al. Nicotinamide riboside augments the aged human skeletal muscle NAD(+) metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 28, 1717–1728.e1716 (2019).
pubmed: 31412242 pmcid: 6702140 doi: 10.1016/j.celrep.2019.07.043
Costford, S. R. et al. Skeletal muscle overexpression of nicotinamide phosphoribosyl transferase in mice coupled with voluntary exercise augments exercise endurance. Mol. Metab. 7, 1–11 (2018).
pubmed: 29146412 doi: 10.1016/j.molmet.2017.10.012
Hou, Y. et al. NAD(+) supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl Acad. Sci. USA 115, E1876–e1885 (2018).
pubmed: 29432159 pmcid: 5828618 doi: 10.1073/pnas.1718819115
Remie, C. M. E. et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am. J. Clin. Nutr. 112, 413–426 (2020).
pubmed: 32320006 pmcid: 7398770 doi: 10.1093/ajcn/nqaa072
Ratajczak, J. et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat. Commun. 7, 13103 (2016).
pubmed: 27725675 pmcid: 5476803 doi: 10.1038/ncomms13103
Bieganowski, P. & Brenner, C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell 117, 495–502 (2004).
pubmed: 15137942 doi: 10.1016/S0092-8674(04)00416-7
Shats, I. et al. Bacteria boost mammalian host NAD metabolism by engaging the deamidated biosynthesis pathway. Cell Metab. 31, 564–579.e7 (2020).
pubmed: 32130883 pmcid: 7194078 doi: 10.1016/j.cmet.2020.02.001
Sauve, A. A., Munshi, C., Lee, H. C. & Schramm, V. L. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries. Biochemistry 37, 13239–13249 (1998).
pubmed: 9748331 doi: 10.1021/bi981248s
Itoh, M. et al. Molecular cloning of murine BST-1 having homology with CD38 and Aplysia ADP-ribosyl cyclase. Biochem. Biophys. Res. Commun. 203, 1309–1317 (1994).
pubmed: 7916574 doi: 10.1006/bbrc.1994.2325
Preugschat, F. et al. A pre-steady state and steady state kinetic analysis of the N-ribosyl hydrolase activity of hCD157. Arch. Biochem. Biophys. 564, 156–163 (2014).
pubmed: 25250980 doi: 10.1016/j.abb.2014.09.008
Hara, N. et al. Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency. J. Biol. Chem. 278, 10914–10921 (2003).
pubmed: 12547821 doi: 10.1074/jbc.M209203200
Aarhus, R., Graeff, R. M., Dickey, D. M., Walseth, T. F. & Lee, H. C. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J. Biol. Chem. 270, 30327–30333 (1995).
pubmed: 8530456 doi: 10.1074/jbc.270.51.30327
Higashida, H. et al. An immunohistochemical, enzymatic, and behavioral study of CD157/BST-1 as a neuroregulator. BMC Neurosci. 18, 35 (2017).
pubmed: 28340569 pmcid: 5366154 doi: 10.1186/s12868-017-0350-7
De Flora, A. et al. CD38 and ADP-ribosyl cyclase catalyze the synthesis of a dimeric ADP-ribose that potentiates the calcium-mobilizing activity of cyclic ADP-ribose. J. Biol. Chem. 272, 12945–12951 (1997).
pubmed: 9148900 doi: 10.1074/jbc.272.20.12945
Kim, L.-J. et al. Nicotinamide mononucleotide (NMN) deamidation by the gut microbiome and evidence for indirect upregulation of the NAD+ metabolome. bioRxiv. https://doi.org/10.1101/2020.09.10.289561 (2020).
Cantó, C. et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838–847 (2012).
pubmed: 22682224 pmcid: 3616313 doi: 10.1016/j.cmet.2012.04.022
Trammell, S. A. et al. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice. Sci. Rep. 6, 26933 (2016).
pubmed: 27230286 pmcid: 4882590 doi: 10.1038/srep26933
Sambeat, A. et al. Endogenous nicotinamide riboside metabolism protects against diet-induced liver damage. Nat. Commun. 10, 4291 (2019).
pubmed: 31541116 pmcid: 6754455 doi: 10.1038/s41467-019-12262-x
Sorrentino, V. et al. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 552, 187–193 (2017).
pubmed: 29211722 pmcid: 5730497 doi: 10.1038/nature25143
Cerutti, R. et al. NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 19, 1042–1049 (2014).
pubmed: 24814483 pmcid: 4051987 doi: 10.1016/j.cmet.2014.04.001
Khan, N. A. et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol. Med. 6, 721–731 (2014).
pubmed: 24711540 pmcid: 4203351 doi: 10.1002/emmm.201403943
Levine, D. C. et al. NAD(+) controls circadian reprogramming through PER2 nuclear translocation to counter aging. Mol. Cell 78, 835–849.e837 (2020).
pubmed: 32369735 pmcid: 7275919 doi: 10.1016/j.molcel.2020.04.010
Dollerup, O. L. et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am. J. Clin. Nutr. 108, 343–353 (2018).
pubmed: 29992272 doi: 10.1093/ajcn/nqy132
Conze, D., Brenner, C. & Kruger, C. L. Safety and metabolism of long-term administration of NIAGEN (nicotinamide riboside chloride) in a randomized, double-blind, placebo-controlled clinical trial of healthy overweight adults. Sci. Rep. 9, 9772 (2019).
pubmed: 31278280 pmcid: 6611812 doi: 10.1038/s41598-019-46120-z
Dollerup, O. L. et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J. Physiol. 598, 731–754 (2020).
pubmed: 31710095 doi: 10.1113/JP278752
Martens, C. R. et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy middle-aged and older adults. Nat. Commun. 9, 1286 (2018).
pubmed: 29599478 pmcid: 5876407 doi: 10.1038/s41467-018-03421-7
Dolopikou, C. F. et al. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study. Eur. J. Nutr. 59, 505–515 (2020).
pubmed: 30725213 doi: 10.1007/s00394-019-01919-4
Muraoka, O., Tanaka, H., Itoh, M., Ishihara, K. & Hirano, T. Genomic structure of human BST-1. Immunol. Lett. 54, 1–4 (1996).
pubmed: 9030974 doi: 10.1016/S0165-2478(96)02633-8
Nakagawara, K. et al. Assignment of CD38, the gene encoding human leukocyte antigen CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase), to chromosome 4p15. Cytogenet. Cell Genet. 69, 38–39 (1995).
pubmed: 7835083 doi: 10.1159/000133933
Harada, N. et al. Expression cloning of a cDNA encoding a novel murine B cell activation marker. Homology to human CD38. J. Immunol. 151, 3111–3118 (1993).
pubmed: 8376770 doi: 10.4049/jimmunol.151.6.3111
Fliegert, R., Gasser, A. & Guse, A. H. Regulation of calcium signalling by adenine-based second messengers. Biochem. Soc. Trans. 35, 109–114 (2007).
pubmed: 17233614 doi: 10.1042/BST0350109
Malavasi, F. et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev. 88, 841–886 (2008).
pubmed: 18626062 doi: 10.1152/physrev.00035.2007
Hussain, A. M., Lee, H. C. & Chang, C. F. Functional expression of secreted mouse BST-1 in yeast. Protein Expr. Purif. 12, 133–137 (1998).
pubmed: 9473467 doi: 10.1006/prep.1997.0811
Gerasimenko, M. et al. Nicotinamide riboside supplementation corrects deficits in oxytocin, sociability and anxiety of CD157 mutants in a mouse model of autism spectrum disorder. Sci. Rep. 10, 10035 (2020).
pubmed: 32572044 pmcid: 7308284 doi: 10.1038/s41598-019-57236-7
Yilmaz, Ö. H. et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490–495 (2012).
pubmed: 22722868 pmcid: 3387287 doi: 10.1038/nature11163
Igarashi, M. & Guarente, L. mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell 166, 436–450 (2016).
pubmed: 27345368 doi: 10.1016/j.cell.2016.05.044
Covarrubias, A. J. et al. Senescent cells promote tissue NAD(+) decline during ageing via the activation of CD38(+) macrophages. Nat. Metab. 2, 1265–1283 (2020).
pubmed: 33199924 pmcid: 7908681 doi: 10.1038/s42255-020-00305-3
Chini, C. C. S. et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD(+) and NMN levels. Nat. Metab. 2, 1284–1304 (2020).
pubmed: 33199925 doi: 10.1038/s42255-020-00298-z
Itoh, M. et al. Deletion of bone marrow stromal cell antigen-1 (CD157) gene impaired systemic thymus independent-2 antigen-induced IgG3 and mucosal TD antigen-elicited IgA responses. J. Immunol. 161, 3974–3983 (1998).
pubmed: 9780166 doi: 10.4049/jimmunol.161.8.3974
Kato, I. et al. CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i, and insulin secretion. J. Biol. Chem. 274, 1869–1872 (1999).
pubmed: 9890936 doi: 10.1074/jbc.274.4.1869
Miyao, N. et al. TBX5 R264K acts as a modifier to develop dilated cardiomyopathy in mice independently of T-box pathway. PLoS ONE 15, e0227393 (2020).
pubmed: 32236096 pmcid: 7112173 doi: 10.1371/journal.pone.0227393
Wakita, M. et al. Structural insights into selective interaction between type IIa receptor protein tyrosine phosphatases and Liprin-α. Nat. Commun. 11, 649 (2020).
pubmed: 32005855 pmcid: 6994669 doi: 10.1038/s41467-020-14516-5
Yaku, K., Okabe, K. & Nakagawa, T. Simultaneous measurement of NAD metabolome in aged mice tissue using liquid chromatography tandem-mass spectrometry. Biomed. Chromatogr. 32, e4205 (2018).
pubmed: 29424941 doi: 10.1002/bmc.4205

Auteurs

Keisuke Yaku (K)

Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.

Sailesh Palikhe (S)

Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.

Hironori Izumi (H)

Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
Research Center for Idling Brain Science (RCIBS), University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.

Tomoyuki Yoshida (T)

Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
Research Center for Idling Brain Science (RCIBS), University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.

Keisuke Hikosaka (K)

Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.

Faisal Hayat (F)

Mitchell Cancer Institute, Department of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36693, USA.

Mariam Karim (M)

Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.

Tooba Iqbal (T)

Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.

Yasuhito Nitta (Y)

Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.

Atsushi Sato (A)

School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.

Marie E Migaud (ME)

Mitchell Cancer Institute, Department of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36693, USA.

Katsuhiko Ishihara (K)

Department of Immunology and Molecular Genetics, Kawasaki Medical University, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.

Hisashi Mori (H)

Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
Research Center for Idling Brain Science (RCIBS), University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
Research Center for Pre-Disease Science, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.

Takashi Nakagawa (T)

Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan. nakagawa@med.u-toyama.ac.jp.
Research Center for Pre-Disease Science, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan. nakagawa@med.u-toyama.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH