Characterization of glyphosate-resistant Burkholderia anthina and Burkholderia cenocepacia isolates from a commercial Roundup® solution.
Journal
Environmental microbiology reports
ISSN: 1758-2229
Titre abrégé: Environ Microbiol Rep
Pays: United States
ID NLM: 101499207
Informations de publication
Date de publication:
02 2022
02 2022
Historique:
received:
08
09
2021
accepted:
29
10
2021
pubmed:
18
11
2021
medline:
5
4
2022
entrez:
17
11
2021
Statut:
ppublish
Résumé
Roundup® is the brand name for herbicide solutions containing glyphosate, which specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase of the shikimate pathway. The inhibition of the EPSP synthase causes plant death because EPSP is required for biosynthesis of aromatic amino acids. Glyphosate also inhibits the growth of archaea, bacteria, Apicomplexa, algae and fungi possessing an EPSP synthase. Here, we have characterized two glyphosate-resistant bacteria from a Roundup solution. Taxonomic classification revealed that the isolates 1CH1 and 2CH1 are Burkholderia anthina and Burkholderia cenocepacia strains respectively. Both isolates cannot utilize glyphosate as a source of phosphorus and synthesize glyphosate-sensitive EPSP synthase variants. Burkholderia. anthina 1CH1 and B. cenocepacia 2CH1 tolerate high levels of glyphosate because the herbicide is not taken up by the bacteria. Previously, it has been observed that the exposure of soil bacteria to herbicides like glyphosate promotes the development of antibiotic resistances. Antibiotic sensitivity testing revealed that the only the B. cenocepacia 2CH1 isolate showed increased resistance to a variety of antibiotics. Thus, the adaptation of B. anthina 1CH1 and B. cenocepacia 2CH1 to glyphosate did not generally increase the antibiotic resistance of both bacteria. However, our study confirms the genomic adaptability of bacteria belonging to the genus Burkholderia.
Identifiants
pubmed: 34786867
doi: 10.1111/1758-2229.13022
doi:
Substances chimiques
3-Phosphoshikimate 1-Carboxyvinyltransferase
EC 2.5.1.19
Glycine
TE7660XO1C
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
70-84Informations de copyright
© 2021 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Références
Andersen, K.S., Kirkegaard, R.H., Karst, S.M., and Albertsen, M. (2018) Ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv: 10-11.
Arahal, D.R. (2014) Whole-genome analyses: average nucleotide identity. In Methods in Microbiology: New Approaches to Prokaryotic Systematics, Vol. 41. Goodfellow, M., Sutcliffe, I., and Chun, J. (eds). Oxford: Elsevier/Academic Press, pp. 103-122.
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., et al. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19: 455-477.
Barry, G.F., Kishore, G.M., and Padgette, S.R.. (1992) Int. Pat. WO 92/04449.
Bolger, A.M., Lohse, M., and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.
Bradshaw, L.D., Padgette, S.R., Kimball, S.L., and Wells, B.H. (1997) Perspectives on glyphosate resistance. Weed Technol 11: 189-1098.
Castle, L.A., Siehl, D.L., Gorton, R., Patten, P.A., Chen, Y.H., Bertain, S., et al. (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304: 1151-1154.
Chekan, J.R., Cogan, D.P., and Nair, S.K. (2016) Molecular basis for resistance against phosphonate antibiotics and herbicides. MedChemComm 7: 28-36.
Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884-i890.
Coeyne, T., and Vandamme, P. (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5: 719-729.
Commichau, F.M., Herzberg, C., Tripal, P., Valerius, O., and Stülke, J. (2007) A regulatory protein-protein interaction governs glutamate biosynthesis in Bacillus subtilis: the glutamate dehydrogenase RocG moonlights in controlling the transcription factor GltC. Mol Microbiol 65: 642-654.
Deatherage, D.E., and Barrick, J.E. (2014) Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol,.. 1151: 165-188.
Drevinek, P., and Mahenthiralingam, E. (2010) Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 16: 821-830.
Duke, S.O., and Powles, S.B. (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64: 319-325.
Fischer, R.S., Berry, A., Gaines, C.G., and Jensen, R.A. (1986) Comparative action of glyphosate as a trigger of energy drain in eubacteria. J Bacteriol 168: 1147-1154.
Franz, J.E. (1979) . In Advances in Pesticide Science, Vol. 2. Geissbuehler, H. (ed). Oxford and New York: Pergamon Press, pp. 139-147.
Gaines, T.A., Zhang, W., Wang, D., Bukun, B., Chisholm, S.T., Shaner, D.L., et al. (2010) Gene amplification confers resistance in Amaranthus palmeri. Proc Natl Acad Sci U S A 107: 1029-1034.
Gao, X., Lin, H., Revanna, K., and Dong, Q. (2017) A Bayesian taxonomic classification method for 16S rRNA gene sequence with improved species-level accuracy. BMC Bioinformatics 18: 247.
Ge, X., d'Avignon, D.A., Ackermann, J.J.H., and Sammons, R.D. (2014) In vivo 31P-nuclear magnetic resonance studies of glyphosate uptak, vacuolar sequestration, and tonoplast pump activity in glyphosate-resistant horseweed. Plant Physiol 166: 1255-1268.
Gresshoff, P.M. (1979) Growth inhibition by glyphosate and reversal of its actions by phenylalanine and tyrosine. Aust J Blant Physiol 6: 177-185.
Gundlach, J., Herzberg, C., Kaever, V., Gunka, K., Hoffmann, T., Weiß, M., et al. (2017) Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis. Sci Signal 10: eaal3011.
Herrmann, K.M., and Weaver, L.M. (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol Rev 78: 176-197.
Hertel, R., Gibhardt, J., Martienssen, M., Kuhn, R., and Commichau, F.M. (2021) Molecular mechanisms underlying glyphosate tolerance in microbes. Envrion Microbiol 23: 2891-2905.
Hoppert, M., and Holzenburg, A. (1998) Electron Microscopy in Microbiology. Oxford, UK: Bios Scientific Publishers.
Hove-Jensen, B., Zechel, D.L., and Jochimsen, B. (2014) Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon lyase. Microbiol Mol Biol Rev 78: 176-197.
Kang, Y., Norris, M.H., Zarzycki-Siek, J., Nierman, W.C., Donachie, S.P., and Hoang, T.T. (2011) Transcript amplification from single bacterium for transcriptome analysis. Genome Res 21: 925-935.
Kearse, M., Moah, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649.
Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P.A. (2019) Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 37: 540-546.
Liao, H., Li, X., Yang, Q., Bai, Y., Cui, P., Wen, C., et al. (2021) Herbicide selection promotes antibiotic resistance in soil microbiomes. Mol Biol Evol 38: 2337-2350.
Lin, Y., Yuan, J., Kolmogorov, M., Shen, M.W., Chaisson, M., and Pevzner, P.A. (2016) Assembly of long error-prone reads using Bruijn graphs. Proc Natl Acad Sci U S A 113: E8396-E8405.
Lu, W., Li, L., Chen, M., Zhou, Z., Zhang, W., Ping, S., et al. (2013) Genome-wide transcriptional responses of Escherichia coli to glyphosate, a potent inhibitor of the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Mol Biosyst 9: 522-530.
Luo, H., Zhang, C.T., and Gao, F. (2014) Ori-finder 2, an integrated tool to predict replication origins in the archaeal genomes. Front Microbiol 5: 482.
Manogaran, M., Ahmad, S.A., Yasid, N.A., Yakasai, H.M., and Shukor, M.Y. (2018b) Characterization of the simultaneous molybdenum reduction and glyphosate degradation by Burkholderia vietnamiensis AQ5-12 and Burkholderia sp. AQ5-13. 3 Biotech 8: 117.
Manogaran, M., Shukor, M.Y., Yasid, N.A., Johari, W.L.W., and Ahmad, S.A. (2017) Isolation and characterization of glyphosate-degrading bacteria isolated from local soils in Malaysia. Rend Lincei 28: 471-479.
Manogaran, M., Shukor, M.Y., Yasid, N.A., Khalil, K.A., and Ahmad, S.A. (2018a) Optimisation of culture composition for glyphosate degradation by Burkholderia vietnamiensis strain AQ5-12. 3-Biotech 8: 108.
Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetJ 17: 10-12.
Meier-Kolthoff, J.P., and Göker, M. (2019) TYGS is an automated high-throughput platform for state-of the-art genome-based taxonomy. Nat Commun 10: 2182.
Okonechnikov, K., Conesa, A., and García-Alcade, F. (2016) Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32: 292-294.
Penaloza-Vazquez, A., Mena, G.L., Herrera-Estrella, L., and Bailey, A.M. (1995) Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Appl Environ Microbiol 61: 538-543.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: D590-D596.
R Core Team. (2020) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org.
Rao, R.N., Allen, N.E., Hobbs, J.N., Alborn, W.E., Kirst, H., and Paschak, J.W. (1983) Genetic and enzymatic basis of hygromycin B resistance in Escherichia coli. Antimicrob Agents Chemother 24: 689-695.
Reitmeier, S., Hitch, T.C.A., Treichel, N., Fikas, N., Hausmann, B., Ramer-Tait, A.E., et al. (2021) Handling of spurious sequences affects the outcome of high-throughput 16S rRNA gene amplicon profiling. ISME Commun 1: 31.
Rhodes, K.A., and Schweizer, H.P. (2016) Antibiotic resistance in Burkholderia species. Drug Resist Updat 28: 82-90.
Richer, M., and Rosselló-Móra, R. (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126-19131.
Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e25484.
Rotsch, A.H., Kopka, J., Feussner, I., and Ischebeck, T. (2017) Central metabolite and sterol profiling divides tobacco male gametophyte development and pollen tube growth into eight metabolic phases. Plant J 92: 129-146.
RStudio Team. (2019) R Studio: Integrated Development for R. Boston, MA: R Studio. http://www.rstudio.com.
Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
Schönbrunn, H.C., Eschenburg, S., Shuttleworth, W.A., Schloss, J.V., Amrhein, N., Evans, J.N., and Kabsch, W. (2001) Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc Natl Acad Sci U S A 98: 1376-1380.
Scoffone, V.C., Barbieri, G., Buroni, S., Scarselli, M., Pizza, M., Rappuoli, R., and Riccardi, G. (2020) Vaccines to overcome antibiotic resistance: the challenge of Burkholderia cenocepacia. Trends Microbiol 28: 315-326.
Shropshire, H., Jones, R.A., Aguilo-Ferretjans, M.M., Scanian, D.J., and Chen, Y. (2021) Proteomics insights into the Burkhoderia cenocepacia phosphorus stress response. Environ Microbiol 23: 5069-5086.
Steinrücken, H.C., and Amrhein, N. (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94: 1207-1212.
Tanskanen, E.I., Tulloch, D.L., Hillier, A.J., and Davidson, B.E. (1990) Pulse-field gel electrophoresis of SmaI digests of lactococcal genomic DNA, a novel method of strain identification. Appl Environ Microbiol 56: 3105-3111.
Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E.P., Zaslavsky, L., et al. (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44: 6614-6624.
Touraine, B., Vignols, F., Przybyla-Toscano, J., Ischebeck, T., Dhalleine, T., Wu, H.C., et al. (2019) Iron-sulfur protein NFU2 is required for branched-chain amino acid synthesis in Arabidopsis roots. J Exp Bot 70: 1875-1889.
Tynkkynen, S., Satokari, R., Saarela, M., Mattila-Sandholm, T., and Saxelin, M. (1999) Comparison of ribotyping, randomly amplified polymorphic DNA analyses, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains. Appl Environ Microbiol 65: 3908-3914.
Vandamme, P., Henry, D., Coenye, T., Nzula, S., Vancanneyt, M., LiPuma, J.J., et al. (2002) Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular tools. FEMS Immunol Med Microbiol 33: 143-149.
Vial, L., Chapalain, A., Groleau, M.C., and Déziel, E. (2011) The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. Environ Microbiol 13: 1-12.
Weinrauch, Y., Msadek, T., Kunst, F., and Dubnau, D. (1991) Sequence and properties of comQ, a new competence regulatory gene of Bacillus subtilis. J Bacteriol 173: 5685-5693.
Wick, R.R., Schultz, M.B., Zobel, J., and Holt, K.E. (2015) Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31: 3350-3352.
Wicke, D., Schulz, L.M., Lentes, S., Scholz, P., Poehlein, A., Gibhardt, J., et al. (2019) Identification of the first glyphosate transporter by genomic adaptation. Environ Microbiol 21: 1287-1305.
Yang, P., Zhang, M., and van Elsas, J.D. (2017) Role of flagella and type four pili in the co-migration of Burkholderia terrae BS001with fungal hyphae through soil. Sci Rep 7: 2997.
Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A. (2014) PEAR: a fast and accurate illumina paired-end reAd mergeR. Bioinformatics 30: 614-620.