Applications of Bacteriophage Cocktails to Reduce Salmonella Contamination in Poultry Farms.
Bacteriophage
Biocontrol
Disinfection
Microbial contamination
Salmonella
Journal
Food and environmental virology
ISSN: 1867-0342
Titre abrégé: Food Environ Virol
Pays: United States
ID NLM: 101483831
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
received:
28
06
2021
accepted:
04
10
2021
pubmed:
14
11
2021
medline:
5
3
2022
entrez:
13
11
2021
Statut:
ppublish
Résumé
Salmonella contamination is a critical problem in poultry farms, with serious consequences for both animals and food products. The aim of this study is to investigate the use of phage cocktails to reduce Salmonella contamination in poultry farms. Within the scope of the study, Salmonella phages were isolated from chicken stool. After the host range of phages was determined, morphological characterization was performed through transmission electron microscopy analysis. Then, replication parameters and adsorption rates were determined by one-step growth curves. After that, phage cocktail was prepared, and its effectiveness was tested in three environments, which were drinking water, shavings, and plastic surfaces. The results obtained have demonstrated that the phage cocktail can reduce Salmonella count up to 2.80 log
Identifiants
pubmed: 34773567
doi: 10.1007/s12560-021-09501-0
pii: 10.1007/s12560-021-09501-0
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1-9Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Abuladze, T., Li, M., Menetrez, M. Y., Dean, T., Senecal, A., & Sulakvelidze, A. (2008). Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157: H7. Applied and Environmental Microbiology, 74(20), 6230–6238.
doi: 10.1128/AEM.01465-08
Acar-Soykut, E. (2007). Identification and classification of virulent bacteriophages of Streptococcus thermophilus and Lactobacillus bulgaricus based on their replication parameters, capsid protein profiles and restriction endonuclease analysis. Ankara University.
Andreatti Filho, R. L., Higgins, J. P., Higgins, S. E., Gaona, G., Wolfenden, A. D., Tellez, G., & Hargis, B. M. (2007). Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar Enteritidis in vitro and in vivo. Poultry Science, 86(9), 1904–1909.
doi: 10.1093/ps/86.9.1904
Antunes, P., Mourão, J., Campos, J., & Peixe, L. (2016). Salmonellosis: The role of poultry meat. Clinical Microbiology and Infection, 22(2), 110–121.
doi: 10.1016/j.cmi.2015.12.004
Atterbury, R. J., Van Bergen, M. A. P., Ortiz, F., Lovell, M. A., Harris, J. A., De Boer, A., et al. (2007). Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Applied and Environmental Microbiology, 73(14), 4543–4549.
doi: 10.1128/AEM.00049-07
Bardina, C., Spricigo, D. A., Cortés, P., & Llagostera, M. (2012). Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry. Applied and Environmental Microbiology, 78(18), 6600–6607.
doi: 10.1128/AEM.01257-12
Borie, C., Albala, I., Sánchez, P., Sánchez, M. L., Ramírez, S., Navarro, C., et al. (2008). Bacteriophage treatment reduces Salmonella colonization of infected chickens. Avian Diseases, 52(1), 64–67.
doi: 10.1637/8091-082007-Reg
Chan, B. K., Abedon, S. T., & Loc-Carrillo, C. (2013). Phage cocktails and the future of phage therapy. Future Microbiology, 8(6), 769–783. https://doi.org/10.2217/fmb.13.47
doi: 10.2217/fmb.13.47
pubmed: 23701332
Chatain-Ly, M. H. (2014). The factors affecting effectiveness of treatment in phages therapy. Frontiers in Microbiology, 5, 51.
doi: 10.3389/fmicb.2014.00051
D’Accolti, M., Soffritti, I., Lanzoni, L., Bisi, M., Volta, A., Mazzacane, S., & Caselli, E. (2019). Effective elimination of Staphylococcal contamination from hospital surfaces by a bacteriophage–probiotic sanitation strategy: A monocentric study. Microbial Biotechnology, 12(4), 742–751.
doi: 10.1111/1751-7915.13415
Duc, H. M., Son, H. M., Honjoh, K., & Miyamoto, T. (2018). Isolation and application of bacteriophages to reduce Salmonella contamination in raw chicken meat. LWT, 91, 353–360.
doi: 10.1016/j.lwt.2018.01.072
El-Gohary, F. A., Huff, W. E., Huff, G. R., Rath, N. C., Zhou, Z. Y., & Donoghue, A. M. (2014). Environmental augmentation with bacteriophage prevents colibacillosis in broiler chickens. Poultry Science, 93(11), 2788–2792.
doi: 10.3382/ps.2014-04282
Fiorentin, L., Vieira, N. D., & Barioni, W., Jr. (2005). Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathology, 34(3), 258–263.
doi: 10.1080/01445340500112157
Fister, S., Robben, C., Witte, A. K., Schoder, D., Wagner, M., & Rossmanith, P. (2016). Influence of environmental factors on phage–bacteria interaction and on the efficacy and infectivity of phage P100. Frontiers in Microbiology, 7, 1152.
doi: 10.3389/fmicb.2016.01152
Garcia, P., Martinez, B., Obeso, J. M., & Rodriguez, A. (2008). Bacteriophages and their application in food safety. Letters in Applied Microbiology, 47(6), 479–485.
doi: 10.1111/j.1472-765X.2008.02458.x
Gill, J. J., & Hyman, P. (2010). Phage choice, isolation, and preparation for phage therapy. Current Pharmaceutical Biotechnology, 11(1), 2–14.
doi: 10.2174/138920110790725311
Gong, C., & Jiang, X. (2017). Application of bacteriophages to reduce Salmonella attachment and biofilms on hard surfaces. Poultry Science, 96(6), 1838–1848.
doi: 10.3382/ps/pew463
Goode, D., Allen, V. M., & Barrow, P. A. (2003). Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Applied and Environmental Microbiology, 69(8), 5032–5036.
doi: 10.1128/AEM.69.8.5032-5036.2003
Guang-Han, O., Leang-Chung, C., Vellasamy, K. M., Mariappan, V., Li-Yen, C., & Vadivelu, J. (2016). Experimental phage therapy for Burkholderia pseudomallei infection. PLoS ONE. https://doi.org/10.1371/journal.pone.0158213
doi: 10.1371/journal.pone.0158213
pubmed: 27387381
pmcid: 4936672
Hashem, F., & Parveen, S. (2016). Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry. Food Microbiology, 53, 104–109.
doi: 10.1016/j.fm.2015.09.008
Huang, C., Shi, J., Ma, W., Li, Z., Wang, J., Li, J., & Wang, X. (2018). Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Research International, 111, 631–641.
doi: 10.1016/j.foodres.2018.05.071
Imklin, N., & Nasanit, R. (2020). Characterization of Salmonella bacteriophages and their potential use in dishwashing materials. Journal of Applied Microbiology, 129(2), 266–277.
doi: 10.1111/jam.14617
Kropinski, A. M. (2009). Measurement of the rate of attachment of bacteriophage to cells. In Bacteriophages (pp. 151–155). Springer.
Lim, T.-H., Kim, M.-S., Lee, D.-H., Lee, Y.-N., Park, J.-K., Youn, H.-N., et al. (2012). Use of bacteriophage for biological control of Salmonella Enteritidis infection in chicken. Research in Veterinary Science, 93(3), 1173–1178.
doi: 10.1016/j.rvsc.2012.06.004
Lu, M., Liu, H., Lu, H., Liu, R., & Liu, X. (2020). Characterization and genome analysis of a novel Salmonella phage vB_SenS_SE1. Current Microbiology, 77(7), 1308–1315. https://doi.org/10.1007/s00284-020-01879-7
doi: 10.1007/s00284-020-01879-7
pubmed: 32086533
Montañez-Izquierdo, V. Y., Salas-Vázquez, D. I., & Rodríguez-Jerez, J. J. (2012). Use of epifluorescence microscopy to assess the effectiveness of phage P100 in controlling Listeria monocytogenes biofilms on stainless steel surfaces. Food Control, 23(2), 470–477.
doi: 10.1016/j.foodcont.2011.08.016
Reyneke, B., Khan, S., Fernández-Ibáñez, P., & Khan, W. (2020). Podoviridae bacteriophage for the biocontrol of Pseudomonas aeruginosa in rainwater. Environmental Science: Water Research and Technology, 6(1), 87–102.
Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press.
Santos, S. B., Fernandes, E., Carvalho, C. M., Sillankorva, S., Krylov, V. N., Pleteneva, E. A., et al. (2010). Selection and characterization of a multivalent salmonella phage and its production in a nonpathogenic Escherichia coli strain. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.00922-10
doi: 10.1128/AEM.00922-10
pubmed: 20817811
pmcid: 2976262
Sillankorva, S. M., Oliveira, H., & Azeredo, J. (2012). Bacteriophages and their role in food safety. International Journal of Microbiology. https://doi.org/10.1155/2012/863945
doi: 10.1155/2012/863945
pubmed: 23316235
pmcid: 3536431
Soykut, E. A., Tayyarcan, E. K., Evran, Ş, Boyacı, İH., Çakır, İ, Khaaladi, M., & Fattouch, S. (2019). Microencapsulation of phages to analyze their demeanor in physiological conditions. Folia Microbiologica, 64(6), 1–13.
Sukumaran, A. T., Nannapaneni, R., Kiess, A., & Sharma, C. S. (2015). Reduction of Salmonella on chicken breast fillets stored under aerobic or modified atmosphere packaging by the application of lytic bacteriophage preparation SalmoFresh
doi: 10.3382/ps/pev332
Vaz, C. S. L., Voss-Rech, D., Alves, L., Coldebella, A., Brentano, L., & Trevisol, I. M. (2020). Effect of time of therapy with wild-type lytic bacteriophages on the reduction of Salmonella Enteritidis in broiler chickens. Veterinary Microbiology, 240, 108527.
doi: 10.1016/j.vetmic.2019.108527
Wójcik, E. A., Stańczyk, M., Wojtasik, A., Kowalska, J. D., Nowakowska, M., Łukasiak, M., et al. (2020). Comprehensive evaluation of the safety and efficacy of BAFASAL® bacteriophage preparation for the reduction of Salmonella in the food chain. Viruses, 12(7), 742.
doi: 10.3390/v12070742
Woolston, J., Parks, A. R., Abuladze, T., Anderson, B., Li, M., Carter, C., et al. (2013). Bacteriophages lytic for Salmonella rapidly reduce Salmonella contamination on glass and stainless steel surfaces. Bacteriophage, 3(3), e25697.
doi: 10.4161/bact.25697
Yeh, Y., Purushothaman, P., Gupta, N., Ragnone, M., Verma, S. C., & De Mello, A. S. (2017). Bacteriophage application on red meats and poultry: Effects on Salmonella population in final ground products. Meat Science, 127, 30–34.
doi: 10.1016/j.meatsci.2017.01.001