The WNT1
Journal
Bone research
ISSN: 2095-4700
Titre abrégé: Bone Res
Pays: China
ID NLM: 101608652
Informations de publication
Date de publication:
10 Nov 2021
10 Nov 2021
Historique:
received:
06
11
2020
accepted:
27
06
2021
revised:
28
05
2021
entrez:
11
11
2021
pubmed:
12
11
2021
medline:
12
11
2021
Statut:
epublish
Résumé
The recent identification of homozygous WNT1 mutations in individuals with osteogenesis imperfecta type XV (OI-XV) has suggested that WNT1 is a key ligand promoting the differentiation and function of bone-forming osteoblasts. Although such an influence was supported by subsequent studies, a mouse model of OI-XV remained to be established. Therefore, we introduced a previously identified disease-causing mutation (G177C) into the murine Wnt1 gene. Homozygous Wnt1
Identifiants
pubmed: 34759273
doi: 10.1038/s41413-021-00170-0
pii: 10.1038/s41413-021-00170-0
pmc: PMC8580994
doi:
Types de publication
Journal Article
Langues
eng
Pagination
48Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : YO 299/1-1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SE2373/1-1
Organisme : China Scholarship Council (CSC)
ID : not applicable
Organisme : EC | Seventh Framework Programme (EC Seventh Framework Programm)
ID : 602300
Organisme : EC | Seventh Framework Programme (EC Seventh Framework Programm)
ID : 602300
Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : DIMEOS
Informations de copyright
© 2021. The Author(s).
Références
Compston, J. E., McClung, M. R. & Leslie, W. D. Osteoporosis. Lancet 393, 364–376 (2019).
pubmed: 30696576
Khosla, S. & Hofbauer, L. C. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 5, 898–907 (2017).
pubmed: 28689769
pmcid: 5798872
doi: 10.1016/S2213-8587(17)30188-2
Saag, K. G. et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med. 377, 1417–1427 (2017).
pubmed: 28892457
doi: 10.1056/NEJMoa1708322
Baron, R. & Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19, 179–192 (2013).
pubmed: 23389618
doi: 10.1038/nm.3074
Little, R. D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 70, 11–19 (2002).
pubmed: 11741193
doi: 10.1086/338450
Balemans, W. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet. 10, 537–543 (2001).
pubmed: 11181578
doi: 10.1093/hmg/10.5.537
Li, X. et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280, 19883–19887 (2005).
pubmed: 15778503
doi: 10.1074/jbc.M413274200
Semenov, M., Tamai, K. & He, X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem. 280, 26770–26775 (2005).
pubmed: 15908424
doi: 10.1074/jbc.M504308200
Laine, C. M. et al. WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N. Engl. J. Med. 368, 1809–1816 (2013).
pubmed: 23656646
pmcid: 3709450
doi: 10.1056/NEJMoa1215458
Pyott, S. M. et al. WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am. J. Hum. Genet. 92, 590–597 (2013).
pubmed: 23499310
pmcid: 3617391
doi: 10.1016/j.ajhg.2013.02.009
Keupp, K. et al. Mutations in WNT1 cause different forms of bone fragility. Am. J. Hum. Genet. 92, 565–574 (2013).
pubmed: 23499309
pmcid: 3617378
doi: 10.1016/j.ajhg.2013.02.010
Fahiminiya, S. et al. Mutations in WNT1 are a cause of osteogenesis imperfecta. J. Med. Genet. 50, 345–348 (2013).
pubmed: 23434763
doi: 10.1136/jmedgenet-2013-101567
Thomas, K. R. & Capecchi, M. R. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 847–850 (1990).
pubmed: 2202907
doi: 10.1038/346847a0
McMahon, A. P. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).
pubmed: 2205396
doi: 10.1016/0092-8674(90)90385-R
Joeng, K. S. et al. The swaying mouse as a model of osteogenesis imperfecta caused by WNT1 mutations. Hum. Mol. Genet. 23, 4035–4042 (2014).
pubmed: 24634143
pmcid: 4082367
doi: 10.1093/hmg/ddu117
Joeng, K. S. et al. Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis. J. Clin. Invest. 127, 2678–2688 (2017).
pubmed: 28628032
pmcid: 5490765
doi: 10.1172/JCI92617
Wang, F. et al. Mesenchymal cell-derived juxtacrine Wnt1 signaling regulates osteoblast activity and osteoclast differentiation. J. Bone Miner. Res. 34, 1129–1142 (2019).
pubmed: 30690791
doi: 10.1002/jbmr.3680
Luther, J. et al. Wnt1 is an Lrp5-independent bone-anabolic Wnt ligand. Sci. Transl. Med. 10, eaau7137 (2018).
Yorgan, T. A. et al. Mice carrying a ubiquitous R235W mutation of Wnt1 display a bone-specific phenotype. J. Bone Miner. Res. 35, 1726–1737 (2020).
Palomo, T., Vilaca, T. & Lazaretti-Castro, M. Osteogenesis imperfecta: diagnosis and treatment. Curr. Opin. Endocrinol. Diabetes Obes. 24, 381–388 (2017).
pubmed: 28863000
doi: 10.1097/MED.0000000000000367
Thomas, K. R., Musci, T. S., Neumann, P. E. & Capecchi, M. R. Swaying is a mutant allele of the proto-oncogene Wnt-1. Cell 67, 969–976 (1991).
pubmed: 1835670
doi: 10.1016/0092-8674(91)90369-A
Kelly, N. H., Schimenti, J. C., Ross, F. P. & van der Meulen, M. C. Transcriptional profiling of cortical versus cancellous bone from mechanically-loaded murine tibiae reveals differential gene expression. Bone 86, 22–29 (2016).
pubmed: 26876048
pmcid: 4833881
doi: 10.1016/j.bone.2016.02.007
Yorgan, T. A. et al. Mice lacking plastin-3 display a specific defect of cortical bone acquisition. Bone 130, 115062 (2020).
pubmed: 31678489
doi: 10.1016/j.bone.2019.115062
Keller, H. & Kneissel, M. SOST is a target gene for PTH in bone. Bone 37, 148–158 (2005).
pubmed: 15946907
doi: 10.1016/j.bone.2005.03.018
Silva, B. C. & Bilezikian, J. P. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr. Opin. Pharmacol. 22, 41–50 (2015).
pubmed: 25854704
pmcid: 5407089
doi: 10.1016/j.coph.2015.03.005
Heckt, T. et al. Parathyroid hormone induces expression and proteolytic processing of Rankl in primary murine osteoblasts. Bone 92, 85–93 (2016).
pubmed: 27554428
doi: 10.1016/j.bone.2016.08.016
Yorgan, T. A. et al. The anti-osteoanabolic function of sclerostin is blunted in mice carrying a high bone mass mutation of Lrp5. J. Bone Miner. Res. 30, 1175–1183 (2015).
pubmed: 25640331
doi: 10.1002/jbmr.2461
Albers, J. et al. Control of bone formation by the serpentine receptor Frizzled-9. J. Cell Biol. 192, 1057–1072 (2011).
pubmed: 21402791
pmcid: 3063134
doi: 10.1083/jcb.201008012
Richards, J. S. et al. Either Kras activation or Pten loss similarly enhance the dominant-stable CTNNB1-induced genetic program to promote granulosa cell tumor development in the ovary and testis. Oncogene 31, 1504–1520 (2012).
pubmed: 21860425
doi: 10.1038/onc.2011.341
Takahashi, M. et al. Isolation of a novel human gene, APCDD1, as a direct target of the beta-Catenin/T-cell factor 4 complex with probable involvement in colorectal carcinogenesis. Cancer Res. 62, 5651–5656 (2002).
pubmed: 12384519
Schneider, A. J., Branam, A. M. & Peterson, R. E. Intersection of AHR and Wnt signaling in development, health, and disease. Int. J. Mol. Sci. 15, 17852–17885 (2014).
pubmed: 25286307
pmcid: 4227194
doi: 10.3390/ijms151017852
Li, Z. Q. et al. Cyr61/CCN1 is regulated by Wnt/beta-catenin signaling and plays an important role in the progression of hepatocellular carcinoma. PLoS One 7, e35754 (2012).
pubmed: 22540002
pmcid: 3335098
doi: 10.1371/journal.pone.0035754
Gerbaix, M., Vico, L., Ferrari, S. L. & Bonnet, N. Periostin expression contributes to cortical bone loss during unloading. Bone 71, 94–100 (2015).
pubmed: 25445447
doi: 10.1016/j.bone.2014.10.011
Marini, J. C. et al. Osteogenesis imperfecta. Nat. Rev. Dis. Prim. 3, 17052 (2017).
pubmed: 28820180
doi: 10.1038/nrdp.2017.52
Marini, J. C., Reich, A. & Smith, S. M. Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation. Curr. Opin. Pediatr. 26, 500–507 (2014).
pubmed: 25007323
pmcid: 4183132
doi: 10.1097/MOP.0000000000000117
Schulze, J. et al. Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2. PLoS One 5, e10309 (2010).
pubmed: 20436912
pmcid: 2860505
doi: 10.1371/journal.pone.0010309
Glatt, V., Canalis, E., Stadmeyer, L. & Bouxsein, M. L. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J. Bone Miner. Res. 22, 1197–1207 (2007).
pubmed: 17488199
doi: 10.1359/jbmr.070507
Moverare-Skrtic, S. et al. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat. Med. 20, 1279–1288 (2014).
pubmed: 25306233
pmcid: 4392888
doi: 10.1038/nm.3654
van Dijk, F. S. et al. PLS3 mutations in X-linked osteoporosis with fractures. N. Engl. J. Med. 369, 1529–1536 (2013).
pubmed: 24088043
doi: 10.1056/NEJMoa1308223
Vahle, J. L. et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol. Pathol. 30, 312–321 (2002).
pubmed: 12051548
doi: 10.1080/01926230252929882
Joiner, D. M., Ke, J., Zhong, Z., Xu, H. E. & Williams, B. O. LRP5 and LRP6 in development and disease. Trends Endocrinol. Metab. 24, 31–39 (2013).
pubmed: 23245947
pmcid: 3592934
doi: 10.1016/j.tem.2012.10.003
Bonnet, N., Garnero, P. & Ferrari, S. Periostin action in bone. Mol. Cell. Endocrinol. 432, 75–82 (2016).
pubmed: 26721738
doi: 10.1016/j.mce.2015.12.014
Bonnet, N. et al. Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice. PLoS One 8, e78347 (2013).
pubmed: 24167618
pmcid: 3805534
doi: 10.1371/journal.pone.0078347
Tashima, T., Nagatoishi, S., Sagara, H., Ohnuma, S. & Tsumoto, K. Osteomodulin regulates diameter and alters shape of collagen fibrils. Biochem. Biophys. Res. Commun. 463, 292–296 (2015).
pubmed: 26003732
doi: 10.1016/j.bbrc.2015.05.053
Tashima, T. et al. Molecular basis for governing the morphology of type-I collagen fibrils by Osteomodulin. Commun. Biol. 1, 33 (2018).
pubmed: 30271919
pmcid: 6123635
doi: 10.1038/s42003-018-0038-2
Gatti, D. et al. Intravenous bisphosphonate therapy increases radial width in adults with osteogenesis imperfecta. J. Bone Miner. Res. 20, 1323–1326 (2005).
pubmed: 16007328
doi: 10.1359/JBMR.050312
Zimmermann, E. A. et al. Mechanical competence and bone quality develop during skeletal growth. J. Bone Miner. Res. 34, 1461–1472 (2019).
pubmed: 30913317
doi: 10.1002/jbmr.3730
Albers, J. et al. Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin. J. Cell Biol. 200, 537–549 (2013).
pubmed: 23401003
pmcid: 3575535
doi: 10.1083/jcb.201207142
Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25, 1468–1486 (2010).
doi: 10.1002/jbmr.141
pubmed: 20533309
Dempster, D. W. et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 28, 2–17 (2013).
pubmed: 23197339
doi: 10.1002/jbmr.1805
Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinforma. 18, 529 (2017).
doi: 10.1186/s12859-017-1934-z
Busse, B. et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 9, 1065–1075 (2010).
pubmed: 20874757
doi: 10.1111/j.1474-9726.2010.00633.x
Koehne, T. et al. Trends in trabecular architecture and bone mineral density distribution in 152 individuals aged 30-90 years. Bone 66, 31–38 (2014).
pubmed: 24859568
doi: 10.1016/j.bone.2014.05.010