Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
10 Nov 2021
Historique:
received: 05 01 2021
accepted: 23 09 2021
entrez: 11 11 2021
pubmed: 12 11 2021
medline: 12 11 2021
Statut: epublish

Résumé

Systematically characterizing slip behaviours on active faults is key to unraveling the physics of tectonic faulting and the interplay between slow and fast earthquakes. Interferometric Synthetic Aperture Radar (InSAR), by enabling measurement of ground deformation at a global scale every few days, may hold the key to those interactions. However, atmospheric propagation delays often exceed ground deformation of interest despite state-of-the art processing, and thus InSAR analysis requires expert interpretation and a priori knowledge of fault systems, precluding global investigations of deformation dynamics. Here, we show that a deep auto-encoder architecture tailored to untangle ground deformation from noise in InSAR time series autonomously extracts deformation signals, without prior knowledge of a fault's location or slip behaviour. Applied to InSAR data over the North Anatolian Fault, our method reaches 2 mm detection, revealing a slow earthquake twice as extensive as previously recognized. We further explore the generalization of our approach to inflation/deflation-induced deformation, applying the same methodology to the geothermal field of Coso, California.

Identifiants

pubmed: 34759266
doi: 10.1038/s41467-021-26254-3
pii: 10.1038/s41467-021-26254-3
pmc: PMC8581022
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6480

Subventions

Organisme : DOE | LDRD | Los Alamos National Laboratory (Los Alamos Lab)
ID : 20200278ER
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 758210
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 758210
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 758210
Organisme : DOE | Office of Science (SC)
ID : 89233218CNA000001
Organisme : Commissariat à l'Énergie Atomique et aux Énergies Alternatives (French Alternative Energies and Atomic Energy Commission)
ID : Yves Rocard LRC

Informations de copyright

© 2021. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Science. 2016 Jul 15;353(6296):253-7
pubmed: 27418504
Science. 2012 Oct 12;338(6104):250-2
pubmed: 23066078
Nature. 2006 Jun 22;441(7096):968-71
pubmed: 16791192
IEEE Trans Image Process. 2017 Jul;26(7):3142-3155
pubmed: 28166495
IEEE Trans Image Process. 2004 Apr;13(4):600-12
pubmed: 15376593
Nat Geosci. 2018;11(8):610-614
pubmed: 29937919

Auteurs

Bertrand Rouet-Leduc (B)

Los Alamos National Laboratory, Geophysics Group, Los Alamos, NM, USA. bertrandrl@lanl.gov.

Romain Jolivet (R)

Laboratoire de Géologie, Département de Géosciences, École normale supérieure, PSL University, CNRS UMR 8538, Paris, France.
Institut Universitaire de France, 1 rue Descartes, 75005, Paris, France.

Manon Dalaison (M)

Laboratoire de Géologie, Département de Géosciences, École normale supérieure, PSL University, CNRS UMR 8538, Paris, France.

Paul A Johnson (PA)

Los Alamos National Laboratory, Geophysics Group, Los Alamos, NM, USA.

Claudia Hulbert (C)

Laboratoire de Géologie, Département de Géosciences, École normale supérieure, PSL University, CNRS UMR 8538, Paris, France.

Classifications MeSH