Diverse epigenetic mechanisms maintain parental imprints within the embryonic and extraembryonic lineages.
DNA methylation
X chromosome
epigenetic regulators
imprinting
placenta
scRNA-seq
Journal
Developmental cell
ISSN: 1878-1551
Titre abrégé: Dev Cell
Pays: United States
ID NLM: 101120028
Informations de publication
Date de publication:
08 11 2021
08 11 2021
Historique:
received:
21
04
2021
revised:
06
08
2021
accepted:
12
10
2021
entrez:
9
11
2021
pubmed:
10
11
2021
medline:
15
12
2021
Statut:
ppublish
Résumé
Genomic imprinting and X chromosome inactivation (XCI) require epigenetic mechanisms to encode allele-specific expression, but how these specific tasks are accomplished at single loci or across chromosomal scales remains incompletely understood. Here, we systematically disrupt essential epigenetic pathways within polymorphic embryos in order to examine canonical and non-canonical genomic imprinting as well as XCI. We find that DNA methylation and Polycomb group repressors are indispensable for autosomal imprinting, albeit at distinct gene sets. Moreover, the extraembryonic ectoderm relies on a broader spectrum of imprinting mechanisms, including non-canonical targeting of maternal endogenous retrovirus (ERV)-driven promoters by the H3K9 methyltransferase G9a. We further identify Polycomb-dependent and -independent gene clusters on the imprinted X chromosome, which appear to reflect distinct domains of Xist-mediated suppression. From our data, we assemble a comprehensive inventory of the epigenetic pathways that maintain parent-specific imprinting in eutherian mammals, including an expanded view of the placental lineage.
Identifiants
pubmed: 34752748
pii: S1534-5807(21)00811-X
doi: 10.1016/j.devcel.2021.10.010
pmc: PMC9463566
mid: NIHMS1755194
pii:
doi:
Substances chimiques
Histones
0
RNA, Long Noncoding
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2995-3005.e4Subventions
Organisme : NIDDK NIH HHS
ID : DP3 DK111898
Pays : United States
Organisme : NIGMS NIH HHS
ID : P01 GM099117
Pays : United States
Informations de copyright
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of interests The authors declare no competing interests.
Références
Nucleic Acids Res. 2015 Dec 2;43(21):e146
pubmed: 26202974
Nat Genet. 2021 Apr;53(4):551-563
pubmed: 33821005
Annu Rev Genet. 2011;45:379-403
pubmed: 21942369
Bioinformatics. 2015 Jan 15;31(2):166-9
pubmed: 25260700
Nat Commun. 2020 May 1;11(1):2150
pubmed: 32358519
Cell. 2019 Feb 21;176(5):952-965
pubmed: 30794780
Nature. 1991 Jan 3;349(6304):84-7
pubmed: 1845916
Development. 2010 Aug 1;137(15):2493-9
pubmed: 20573698
Science. 2008 Dec 12;322(5908):1717-20
pubmed: 18988810
Cell Rep. 2020 Oct 27;33(4):108315
pubmed: 33113380
Genes Dev. 2002 Jul 15;16(14):1779-91
pubmed: 12130538
Genome Res. 2016 Feb;26(2):192-202
pubmed: 26576615
Science. 2013 Aug 16;341(6147):1237973
pubmed: 23828888
Nature. 2002 Feb 14;415(6873):810-3
pubmed: 11845212
Cell Stem Cell. 2011 Jun 3;8(6):676-87
pubmed: 21624812
Dev Cell. 2008 Nov;15(5):668-79
pubmed: 18848501
Genes Dev. 2021 Jun;35(11-12):821-834
pubmed: 34074696
Nat Rev Genet. 2014 Aug;15(8):517-30
pubmed: 24958438
Cold Spring Harb Perspect Biol. 2014 Feb 01;6(2):
pubmed: 24492710
Curr Opin Genet Dev. 2020 Apr;61:53-61
pubmed: 32403014
Nature. 2015 May 14;521(7551):232-6
pubmed: 25915022
Cell. 2019 Jan 10;176(1-2):182-197.e23
pubmed: 30595450
Cell. 2013 May 9;153(4):910-8
pubmed: 23643243
Nature. 2017 Jul 27;547(7664):419-424
pubmed: 28723896
PLoS Genet. 2013;9(10):e1003853
pubmed: 24098153
Nature. 1984 Apr 5-11;308(5959):548-50
pubmed: 6709062
Nature. 1985 Jun 6-12;315(6019):496-8
pubmed: 4000278
Genome Biol. 2014;15(12):550
pubmed: 25516281
PLoS Genet. 2019 Jul 22;15(7):e1008268
pubmed: 31329595
Nature. 2020 Aug;584(7819):102-108
pubmed: 32728215
Sci Adv. 2019 Dec 20;5(12):eaay7246
pubmed: 32064321
Mol Cell. 2008 Oct 24;32(2):232-46
pubmed: 18951091
Nature. 1991 May 9;351(6322):153-5
pubmed: 1709450
Dev Biol. 1994 Jan;161(1):179-93
pubmed: 8293872
Science. 2015 Jul 17;349(6245):
pubmed: 26089354
Genes Dev. 2017 Oct 1;31(19):1927-1932
pubmed: 29089420
Nat Rev Genet. 2019 Apr;20(4):235-248
pubmed: 30647469
Science. 2012 Mar 23;335(6075):1499-502
pubmed: 22442485
Cell Rep. 2015 Jul 28;12(4):554-61
pubmed: 26190100
Epigenetics Chromatin. 2013 Jun 04;6(1):15
pubmed: 23735015
Cell. 1984 May;37(1):179-83
pubmed: 6722870
Dev Biol. 2005 Dec 15;288(2):363-71
pubmed: 16289026
Nucleic Acids Res. 2016 Jul 8;44(W1):W272-6
pubmed: 27185894
Mol Cell. 2019 Aug 8;75(3):523-537.e10
pubmed: 31256989
Elife. 2019 Apr 02;8:
pubmed: 30938678
Genome Biol. 2019 Oct 29;20(1):225
pubmed: 31665063
Nature. 2017 Sep 28;549(7673):543-547
pubmed: 28959968
Cell. 2015 Apr 9;161(2):404-16
pubmed: 25843628
Methods Mol Biol. 2010;636:25-44
pubmed: 20336514
Mol Cell Biol. 2008 Feb;28(3):1104-13
pubmed: 18039842
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Elife. 2017 Aug 14;6:
pubmed: 28806168
Nat Genet. 2017 Jan;49(1):110-118
pubmed: 27841881
Nature. 2020 Feb;578(7795):455-460
pubmed: 32025035
Cell. 1991 Feb 22;64(4):849-59
pubmed: 1997210
Genes Dev. 1997 Jan 15;11(2):156-66
pubmed: 9009199
PLoS Genet. 2011 Mar;7(3):e1001347
pubmed: 21455290
Dev Cell. 2008 Oct;15(4):547-57
pubmed: 18854139
Elife. 2015 Nov 09;4:
pubmed: 26551560
Nature. 2010 Jan 14;463(7278):237-40
pubmed: 20075919
Genetics. 2006 Aug;173(4):2103-10
pubmed: 16582439
Nature. 1991 Jun 20;351(6328):667-70
pubmed: 2052093
Annu Rev Biochem. 2020 Jun 20;89:255-282
pubmed: 32259458
Nat Genet. 2021 Apr;53(4):539-550
pubmed: 33821003
Mol Cell Biol. 2004 Mar;24(6):2478-86
pubmed: 14993285
Genome Biol. 2015 Aug 15;16:166
pubmed: 26282267
Development. 2011 Dec;138(24):5333-43
pubmed: 22110054
Genes Dev. 2006 May 15;20(10):1268-82
pubmed: 16702402
Cell Stem Cell. 2018 Sep 6;23(3):343-354.e5
pubmed: 30033120
Nature. 2011 Sep 14;477(7364):289-94
pubmed: 21921910