Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes.


Journal

PLoS biology
ISSN: 1545-7885
Titre abrégé: PLoS Biol
Pays: United States
ID NLM: 101183755

Informations de publication

Date de publication:
11 2021
Historique:
received: 01 07 2021
accepted: 17 10 2021
revised: 07 12 2021
pubmed: 10 11 2021
medline: 22 12 2021
entrez: 9 11 2021
Statut: epublish

Résumé

The archaeal tailed viruses (arTV), evolutionarily related to tailed double-stranded DNA (dsDNA) bacteriophages of the class Caudoviricetes, represent the most common isolates infecting halophilic archaea. Only a handful of these viruses have been genomically characterized, limiting our appreciation of their ecological impacts and evolution. Here, we present 37 new genomes of haloarchaeal tailed virus isolates, more than doubling the current number of sequenced arTVs. Analysis of all 63 available complete genomes of arTVs, which we propose to classify into 14 new families and 3 orders, suggests ancient divergence of archaeal and bacterial tailed viruses and points to an extensive sharing of genes involved in DNA metabolism and counterdefense mechanisms, illuminating common strategies of virus-host interactions with tailed bacteriophages. Coupling of the comparative genomics with the host range analysis on a broad panel of haloarchaeal species uncovered 4 distinct groups of viral tail fiber adhesins controlling the host range expansion. The survey of metagenomes using viral hallmark genes suggests that the global architecture of the arTV community is shaped through recurrent transfers between different biomes, including hypersaline, marine, and anoxic environments.

Identifiants

pubmed: 34752450
doi: 10.1371/journal.pbio.3001442
pii: PBIOLOGY-D-21-01760
pmc: PMC8651126
doi:

Substances chimiques

DNA, Viral 0
Viral Proteins 0
DNA 9007-49-2

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

e3001442

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Wellcome Trust
ID : WT108418AIA
Pays : United Kingdom

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Environ Microbiol. 2019 Jun;21(6):2056-2078
pubmed: 30773816
Environ Microbiol. 2016 Mar;18(3):889-903
pubmed: 26472517
Genes (Basel). 2021 Jun 24;12(7):
pubmed: 34202810
Nucleic Acids Res. 2016 Jul 8;44(W1):W351-5
pubmed: 27131377
Nucleic Acids Res. 2021 Jan 8;49(D1):D764-D775
pubmed: 33137183
J Virol. 2013 Mar;87(6):3248-60
pubmed: 23283946
Nat Rev Microbiol. 2018 Dec;16(12):760-773
pubmed: 30104690
Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14
pubmed: 24293654
Nucleic Acids Res. 2018 Sep 19;46(16):8483-8499
pubmed: 30010922
Genes (Basel). 2020 Apr 08;11(4):
pubmed: 32276506
J Gen Virol. 2018 Sep;99(9):1331-1343
pubmed: 30016225
Trends Microbiol. 2014 Jun;22(6):334-44
pubmed: 24647075
Biochem Soc Trans. 2011 Jan;39(1):82-8
pubmed: 21265751
Annu Rev Virol. 2019 Sep 29;6(1):141-160
pubmed: 31337287
Genes (Basel). 2018 Oct 12;9(10):
pubmed: 30322017
Mol Microbiol. 2000 Mar;35(5):1168-79
pubmed: 10712697
Proc Natl Acad Sci U S A. 1986 Feb;83(4):986-90
pubmed: 3456577
Science. 2021 Aug 20;373(6557):871-876
pubmed: 34282049
Genes (Basel). 2021 Jan 23;12(2):
pubmed: 33498646
PeerJ. 2017 Jun 15;5:e3428
pubmed: 28630803
J Mol Biol. 2004 Jun 25;340(1):141-77
pubmed: 15184028
Mol Biol Evol. 2020 Aug 1;37(8):2268-2278
pubmed: 32211852
Annu Rev Virol. 2020 Sep 29;7(1):371-384
pubmed: 32559405
Curr Opin Microbiol. 2015 Jun;25:40-8
pubmed: 25932531
PLoS One. 2012;7(3):e33802
pubmed: 22479446
Mol Microbiol. 1998 Oct;30(2):233-44
pubmed: 9791169
Nat Commun. 2019 Nov 29;10(1):5442
pubmed: 31784519
Environ Microbiol. 2019 Jun;21(6):2129-2147
pubmed: 30920125
Mol Microbiol. 2002 Aug;45(3):851-63
pubmed: 12139629
Arch Virol. 2019 Mar;164(3):667-674
pubmed: 30523430
Genome Biol Evol. 2011;3:674-86
pubmed: 21746838
ISME J. 2019 Mar;13(3):618-631
pubmed: 30315316
J Struct Biol. 2009 Sep;167(3):227-34
pubmed: 19545636
Mol Microbiol. 2006 Jan;59(2):590-601
pubmed: 16390452
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Front Microbiol. 2014 Mar 12;5:84
pubmed: 24659986
Nucleic Acids Res. 2021 Jan 8;49(D1):D723-D733
pubmed: 33152092
Genome Res. 2009 Sep;19(9):1639-45
pubmed: 19541911
Microbiome. 2018 Feb 20;6(1):38
pubmed: 29458427
Front Microbiol. 2018 Jan 26;9:28
pubmed: 29434576
Environ Microbiol. 2012 Aug;14(8):2113-26
pubmed: 22348436
Sci Adv. 2016 Oct 12;2(10):e1600492
pubmed: 27757416
J Mol Biol. 2010 Mar 19;397(1):144-60
pubmed: 20109464
Mol Biol Evol. 2018 Dec 1;35(12):3041-3043
pubmed: 30351396
Sci Rep. 2017 Aug 15;7(1):8292
pubmed: 28811656
Nature. 2016 Aug 25;536(7617):425-30
pubmed: 27533034
Nature. 2016 Sep 29;537(7622):689-693
pubmed: 27654921
FEMS Microbiol Rev. 2018 May 1;42(3):353-375
pubmed: 29529204
Annu Rev Virol. 2015 Nov;2(1):41-66
pubmed: 26958906
Cell Host Microbe. 2020 Nov 11;28(5):724-740.e8
pubmed: 32841606
Cell. 2019 May 16;177(5):1109-1123.e14
pubmed: 31031001
Environ Microbiol. 2019 Jun;21(6):1980-1988
pubmed: 30370610
Environ Microbiol. 2021 Jul;23(7):3614-3626
pubmed: 33022088
Nat Rev Microbiol. 2020 Mar;18(3):125-138
pubmed: 32015529
Viruses. 2015 Apr 10;7(4):1902-26
pubmed: 25866903
Antonie Van Leeuwenhoek. 2017 Oct;110(10):1281-1286
pubmed: 28204908
Bioinformatics. 2016 Nov 1;32(21):3246-3251
pubmed: 27378296
Curr Biol. 2017 May 8;27(9):1362-1368
pubmed: 28457865
Virol J. 2019 Feb 1;16(1):15
pubmed: 30709355
Genes (Basel). 2019 Mar 01;10(3):
pubmed: 30832293
Amino Acids. 2018 Dec;50(12):1647-1661
pubmed: 30238253
Nat Rev Microbiol. 2011 Jun;9(6):414-26
pubmed: 21572458
Structure. 2018 Dec 4;26(12):1573-1582.e4
pubmed: 30244968
Microbiol Mol Biol Rev. 2020 Mar 4;84(2):
pubmed: 32132243
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
PLoS Genet. 2016 Jul 05;12(7):e1006134
pubmed: 27380413
Virology. 2015 May;479-480:310-30
pubmed: 25742714
Cell. 2021 Feb 18;184(4):1098-1109.e9
pubmed: 33606979
Front Microbiol. 2015 Apr 10;6:265
pubmed: 25914678
Life (Basel). 2015 Mar 10;5(1):818-40
pubmed: 25764277
J Bacteriol. 1998 Feb;180(3):667-73
pubmed: 9457873
Nucleic Acids Res. 2015 Dec 15;43(22):10989-1002
pubmed: 26438534
Nat Microbiol. 2018 Jul;3(7):754-766
pubmed: 29867096
Curr Opin Virol. 2019 Jun;36:9-16
pubmed: 30856581
Adv Virus Res. 2020;108:127-164
pubmed: 33837715
Virology. 2016 Dec;499:219-229
pubmed: 27693926
Cell Host Microbe. 2019 Oct 9;26(4):527-541.e5
pubmed: 31600503
J Biol Chem. 2003 Oct 17;278(42):41148-59
pubmed: 12869542
mSphere. 2017 Mar 1;2(2):
pubmed: 28261669
Syst Biol. 2020 Jan 1;69(1):110-123
pubmed: 31127947
Sci Adv. 2020 Feb 07;6(6):eaay5981
pubmed: 32083183
Nat Commun. 2019 Feb 14;10(1):752
pubmed: 30765709
Nat Rev Microbiol. 2020 Nov;18(11):661-670
pubmed: 32665595
Nat Microbiol. 2020 Oct;5(10):1262-1270
pubmed: 32690954
Mol Microbiol. 2012 Jan;83(1):137-50
pubmed: 22111759
Environ Microbiol. 2012 Feb;14(2):426-40
pubmed: 22003883
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10604-9
pubmed: 23733949
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W597-600
pubmed: 23671338
Curr Protoc Bioinformatics. 2020 Dec;72(1):e108
pubmed: 33315308
Rev Environ Sci Biotechnol. 2006 Aug;5(2-3):203-218
pubmed: 21984879
Nat Rev Microbiol. 2017 Nov 10;15(12):724-739
pubmed: 29123227
FEMS Microbiol Rev. 2011 Nov;35(6):993-1034
pubmed: 21204862
Syst Biol. 2010 May;59(3):307-21
pubmed: 20525638
Mol Biol Evol. 2009 Jul;26(7):1641-50
pubmed: 19377059
Nat Biotechnol. 2019 Jun;37(6):632-639
pubmed: 31061483
RNA Biol. 2013 May;10(5):803-16
pubmed: 23470522
BMC Genomics. 2007 Nov 09;8:410
pubmed: 17996081
Nucleic Acids Res. 2008 Apr;36(7):2295-300
pubmed: 18287115
Bioinformatics. 2011 Apr 1;27(7):1009-10
pubmed: 21278367
ISME J. 2020 Jul;14(7):1821-1833
pubmed: 32322010

Auteurs

Ying Liu (Y)

Institut Pasteur, Université de Paris, Archaeal Virology Unit, Paris, France.

Tatiana A Demina (TA)

Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.

Simon Roux (S)

DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.

Pakorn Aiewsakun (P)

Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.

Darius Kazlauskas (D)

Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.

Peter Simmonds (P)

Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.

David Prangishvili (D)

Institut Pasteur, Université de Paris, Archaeal Virology Unit, Paris, France.
Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia.

Hanna M Oksanen (HM)

Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.

Mart Krupovic (M)

Institut Pasteur, Université de Paris, Archaeal Virology Unit, Paris, France.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis
Animals Hemiptera Insect Proteins Phylogeny Insecticides

Classifications MeSH