The impact of gadolinium-based MR contrast on radiotherapy planning for oropharyngeal treatment on the MR Linac.
GBCA
MR Linac
MR-guided
MRgART
contrast dose enhancement
treatment planning
Journal
Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746
Informations de publication
Date de publication:
Jan 2022
Jan 2022
Historique:
revised:
08
09
2021
received:
25
02
2021
accepted:
15
10
2021
pubmed:
7
11
2021
medline:
18
1
2022
entrez:
6
11
2021
Statut:
ppublish
Résumé
Gadolinium-based contrast agents (GBCAs) may add value to magnetic resonance (MR)-only radiotherapy (RT) workflows including on hybrid machines such as the MR Linac. The impact of GBCAs on RT dose distributions however have not been well studied. This work used retrospective GBCA-enhanced datasets to assess the dosimetric effect of GBCAs on head and neck plans. Ten patients with oropharyngeal squamous cell carcinoma receiving RT from November 2018 to April 2020 were included in this study. RT planning included contrast-enhanced computed tomography (CT) and MR scans. A contrast agent "contour" was defined by delineating GBCA-enhanced regions using an agreed window/level threshold, transferred to the planning CT and given a standardized electron density (ED) of 1.149 in the Monaco treatment planning system (Elekta AB). Four plans were per patient calculated and compared using two methods: (1) optimized without contrast (Plan A) then recalculated with ED (Plan B), and (2) optimized with contrast ED (Plan C) then without (Plan D). For target parameters minimum and maximum doses to 1cc of PTVs, D The median percent dose differences for key reportable dosimetric parameters between non-contrast and simulated contrast plans were <1.2% over all fractions over all patients for reportable target parameters (mean 0.34%, range 0.22%-1.02%). The percent dose differences for maximum dose to 1cc of both PTV1 and PTV2 were significantly different after application of density override (p < 0.05) but only in method 2 (Plan C vs. Plan D). For D Dose differences to targets and OARs in oropharyngeal cancer treatment due to the presence of GBCA were minimal, and this work suggests that prospective in vivo evaluations of impact may not be necessary in this clinical site. Accounting for GBCAs may not be needed in daily adaptive workflows on the MR Linac.
Substances chimiques
Gadolinium
AU0V1LM3JT
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
510-520Subventions
Organisme : CRUK ART-NET Network Accelerator
ID : C309/A21993
Organisme : CRUK ART-NET Network Accelerator
ID : C147/A18083
Organisme : CRUK ART-NET Network Accelerator
ID : C147/A25254
Informations de copyright
© 2021 American Association of Physicists in Medicine.
Références
Choi Y, Kim JK, Lee HS, et al. Influence of intravenous contrast agent on dose calculations of intensity modulated radiation therapy plans for head and neck cancer. Radiother Oncol. 2006;81(2):158-162. https://doi.org/10.1016/j.radonc.2006.09.010.
Judnick JW, Kessler ML, Fleming T, Petti P, Castro JR. Radiotherapy technique integrates MRI into CT. Radiol Technol. 1992;64(2):82-89.
Okamoto Y, Kodama A, Kono M. Development and clinical application of MR simulation system for radiotherapy planning: with reference to intracranial and head and neck regions. Nihon Igaku Hoshasen Gakkai Zasshi. 1997;57(4):203-210. http://www.ncbi.nlm.nih.gov/pubmed/9125877.
Yanke BR, Ten Haken RK, Aisen A, Fraass BA, Thornton AF. Design of MRI scan protocols for use in 3-D, CT-based treatment planning. Med Dosim. 1991;16(4):205-211. https://doi.org/10.1016/0958-3947(91)90084-F.
Metcalfe P, Liney GP, Holloway L, et al. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat. 2013;12(5):429-446. https://doi.org/10.7785/tcrt.2012.500342.
Glastonbury CM. Head and Neck Squamous Cell Cancer: Approach to Staging and Surveillance. Springer; 2020.
Lee FH, Chan CL, Law CK. Influence of CT contrast agent on dose calculation of intensity modulated radiation therapy plan for nasopharyngeal carcinoma. J Med Imaging Radiat Oncol. 2009;53(1):114-118. https://doi.org/10.1111/j.1754-9485.2009.02046.x.
Barrett A, Dobbs J, Morris S, Roques T. Oropharynx cancer and unknown primary tumour. Practical Radiotherapy Planning. 4th ed. Hodder Arnold; 2009: 134-145.
Shibamoto Y, Naruse A, Fukuma H, Ayakawa S, Sugie C, Tomita N. Influence of contrast materials on dose calculation in radiotherapy planning using computed tomography for tumors at various anatomical regions: a prospective study. Radiother Oncol. 2007;84(1):52-55. https://doi.org/10.1016/j.radonc.2007.05.015.
Létourneau D, Finlay M, O'Sullivan B, et al. Lack of influence of intravenous contrast on head and neck IMRT dose distributions. Acta Oncol (Madr). 2008;47(1):90-94. https://doi.org/10.1080/02841860701418861.
Aime S, Caravan P. Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging. 2009;30(6):1259-1267. https://doi.org/10.1002/jmri.21969.Biodistribution.
Zhang DG, Feygelman V, Moros EG, Latifi K, Zhang GG. Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy. PLoS One. 2014;9(10):1-8. https://doi.org/10.1371/journal.pone.0109389.
Ahmad SB, Paudel MR, Sarfehnia A, et al. The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac. Phys Med Biol. 2017;62(16):N362-N374. https://doi.org/10.1088/1361-6560/aa7acb.
Chin S, Eccles CL, McWilliam A, et al. Magnetic resonance-guided radiation therapy: a review. J Med Imaging Radiat Oncol. 2019;64:163-177. https://doi.org/10.1111/1754-9485.12968.
Raaymakers BW, Jürgenliemk-Schulz IM, Bol GH, et al. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol. 2017;62(23):L41-L50. https://doi.org/10.1088/1361-6560/aa9517.
Mutic S, Dempsey JF. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol. 2014;24(3):196-199. https://doi.org/10.1016/j.semradonc.2014.02.008.
Datta A, Aznar MC, Dubec M, Parker GJM, O'Connor JPB. Delivering functional imaging on the MRI-Linac: current challenges and potential solutions. Clin Oncol. 2018;30(11):702-710. https://doi.org/10.1016/j.clon.2018.08.005.
FDA Highlights of prescribing information. 2013. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/204781s008lbl.pdf. Accessed 15 Nov. 2021
Royal College of Radiologists. Guidance on Gadolinium-Based Contrast Agent Administration to Adult Patients. Royal College of Radiologists; 2019.
Turyanskaya A, Rauwolf M, Pichler V, et al. Detection and imaging of gadolinium accumulation in human bone tissue by micro- and submicro-XRF. Sci Rep. 2020;10(1):1-9. https://doi.org/10.1038/s41598-020-63325-9.
PubChem. Compound summary: Dotarem. Accessed July 29, 2020. https://pubchem.ncbi.nlm.nih.gov/compound/Dotarem
Westbrook C, Kaut Roth C, Talbot J. Contrast agents in MRI. MRI in Practice. 4th ed. Wiley-Blackwell; 2011: 372-395.
Elekta Monaco® Dose Calculation Technical Reference. 2017.
Bahig H, Yuan Y, Mohamed ASR, et al. Magnetic resonance-based response assessment and dose adaptation in human papilloma virus positive tumors of the oropharynx treated with radiotherapy (MR-ADAPTOR): an R-IDEAL stage 2a-2b/Bayesian phase II trial. Clin Transl Radiat Oncol. 2018;13:19-23. https://doi.org/10.1016/j.ctro.2018.08.003.
Nelson KL, Runge VM. Basic principles of MR contrast. Top Magn Reson Imaging. 1995;7(3):124-136. https://doi.org/10.1097/00002142-199500730-00002.
Weerakoon BS, Osuga T, Konishi T. Assessment the optimal effect of time of repetition: extrinsic pulse parameter on Gd-DTPA enhanced, spin-echo T1-weighted MR images under low magnetic field strength. Int J Med Physics Clin Eng Radiat Oncol. 2016;05(03):196-203. https://doi.org/10.4236/ijmpcero.2016.53021.
Kushnirsky M, Nguyen V, Katz JS, et al. Time-delayed contrast-enhanced MRI improves detection of brain metastases and apparent treatment volumes. J Neurosurg. 2016;124(2):489-495. https://doi.org/10.3171/2015.2.JNS141993.
Xiao J, Zhang H, Gong Y, et al. Feasibility of using intravenous contrast-enhanced computed tomography (CT) scans in lung cancer treatment planning. Radiother Oncol. 2010;96(1):73-77. https://doi.org/10.1016/j.radonc.2010.02.029.
Delorme R, Taupin F, Flaender M, et al. Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement. Med Phys. 2017;44(11):5949-5960.
Taupin F, Flaender M, Delorme R, et al. Gadolinium nanoparticles and contrast agent as radiation sensitizers. Phys Med Biol. 2015;60(11):4449-4464.
Dufort S, Duc L, Salomé M, et al. The high radiosensitizing efficiency of a trace of gadolinium- based nanoparticles in tumors. Sci Rep. 2016;6:29678. https://doi.org/10.1038/srep29678.
Sancey L, Lux F, Kotb S, et al. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol. 2014;87(1041):1-15. https://doi.org/10.1259/bjr.20140134.