Improved prediction of immune checkpoint blockade efficacy across multiple cancer types.
Journal
Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648
Informations de publication
Date de publication:
04 2022
04 2022
Historique:
received:
03
12
2020
accepted:
23
08
2021
pubmed:
3
11
2021
medline:
15
4
2022
entrez:
2
11
2021
Statut:
ppublish
Résumé
Only a fraction of patients with cancer respond to immune checkpoint blockade (ICB) treatment, but current decision-making procedures have limited accuracy. In this study, we developed a machine learning model to predict ICB response by integrating genomic, molecular, demographic and clinical data from a comprehensively curated cohort (MSK-IMPACT) with 1,479 patients treated with ICB across 16 different cancer types. In a retrospective analysis, the model achieved high sensitivity and specificity in predicting clinical response to immunotherapy and predicted both overall survival and progression-free survival in the test data across different cancer types. Our model significantly outperformed predictions based on tumor mutational burden, which was recently approved by the U.S. Food and Drug Administration for this purpose
Identifiants
pubmed: 34725502
doi: 10.1038/s41587-021-01070-8
pii: 10.1038/s41587-021-01070-8
pmc: PMC9363980
mid: NIHMS1819096
doi:
Substances chimiques
Biomarkers, Tumor
0
Immune Checkpoint Inhibitors
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
499-506Subventions
Organisme : NCI NIH HHS
ID : R01 CA205426
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Organisme : NCI NIH HHS
ID : R35 CA232097
Pays : United States
Organisme : NIH HHS
ID : DP5 OD028171
Pays : United States
Organisme : NIDCR NIH HHS
ID : R01 DE027738
Pays : United States
Organisme : NIDCR NIH HHS
ID : K08 DE024774
Pays : United States
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Subbiah, V., Solit, D. B., Chan, T. A. & Kurzrock, R. The FDA approval of pembrolizumab for adult and pediatric patients with tumor mutational burden (TMB) ≥10: a decision centered on empowering patients and their physicians. Ann. Oncol. 31, 1115–1118 (2020).
doi: 10.1016/j.annonc.2020.07.002
pubmed: 32771306
Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).
doi: 10.1038/nrc.2016.36
pubmed: 27079802
pmcid: 5381938
Bendell, J. et al. Efficacy and safety results from IMblaze370, a randomised phase III study comparing atezolizumab plus cobimetinib and atezolizumab monotherapy vs regorafenib in chemotherapy-refractory metastatic colorectal cancer. Ann. Oncol. 29, 123–123 (2018).
doi: 10.1093/annonc/mdy208.003
Carbone, D. P. et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med. 376, 2415–2426 (2017).
doi: 10.1056/NEJMoa1613493
pubmed: 28636851
pmcid: 6487310
Cohen, E. E. et al. Pembrolizumab (pembro) vs standard of care (SOC) for recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC): phase 3 KEYNOTE-040 trial. Ann. Oncol. 28 https://oncologypro.esmo.org/meeting-resources/esmo-2017-congress/Pembrolizumab-pembro-vs-standard-of-care-SOC-for-recurrent-or-metastatic-head-and-neck-squamous-cell-carcinoma-R-M-HNSCC-Phase-3-KEYNOTE-040-trial (2017).
Powles, T. et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet 391, 748–757 (2018).
doi: 10.1016/S0140-6736(17)33297-X
pubmed: 29268948
Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).
doi: 10.1038/s41568-019-0116-x
pubmed: 30755690
pmcid: 6705396
Keenan, T. E., Burke, K. P. & Van Allen, E. M. Genomic correlates of response to immune checkpoint blockade. Nat. Med. 25, 389–402 (2019).
doi: 10.1038/s41591-019-0382-x
pubmed: 30842677
pmcid: 6599710
Anagnostou, V. et al. Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer. Nat. Cancer 1, 99–111 (2020).
doi: 10.1038/s43018-019-0008-8
pubmed: 32984843
pmcid: 7514475
Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).
doi: 10.1038/s41591-018-0300-7
pubmed: 30617339
Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. N. Engl. J. Med. 380, 1347–1358 (2019).
doi: 10.1056/NEJMra1814259
pubmed: 30943338
Eisenhauer, E. A. et al. New response evaluation criteria in solid tumors: RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).
doi: 10.1016/j.ejca.2008.10.026
pubmed: 19097774
Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).
doi: 10.1038/nm.4333
pubmed: 28481359
pmcid: 5461196
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
doi: 10.1023/A:1010933404324
Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).
doi: 10.1126/science.aaa1348
pubmed: 25765070
pmcid: 4993154
Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).
doi: 10.1056/NEJMoa1406498
pubmed: 25409260
pmcid: 4315319
Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).
doi: 10.1126/science.aad0095
pubmed: 26359337
pmcid: 5054517
Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949 (2017).
Goodman, A. M. et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther. 16, 2598–2608 (2017).
doi: 10.1158/1535-7163.MCT-17-0386
pubmed: 28835386
pmcid: 5670009
Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–20 (2019).
doi: 10.1038/s41588-018-0312-8
pubmed: 30643254
pmcid: 6365097
Luksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).
doi: 10.1038/nature24473
pubmed: 29132144
pmcid: 6137806
Valero, C. et al. The association between tumor mutational burden and prognosis is dependent on treatment context. Nat. Genet. 53, 11–15 (2021).
doi: 10.1038/s41588-020-00752-4
pubmed: 33398197
pmcid: 7796993
Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).
Chowell, D. et al. Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat. Med. 25, 1715–1720 (2019).
doi: 10.1038/s41591-019-0639-4
pubmed: 31700181
pmcid: 7938381
Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).
doi: 10.1126/science.aao4572
pubmed: 29217585
Mandal, R. et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science 364, 485–491 (2019).
doi: 10.1126/science.aau0447
pubmed: 31048490
pmcid: 6685207
Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).
Wang, Z. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 25, 141–151 (2019).
doi: 10.1038/s41591-018-0221-5
pubmed: 30420753
Sanchez, A. et al. Transcriptomic signatures related to the obesity paradox in patients with clear cell renal cell carcinoma: a cohort study. Lancet Oncol. 21, 283–293 (2020).
doi: 10.1016/S1470-2045(19)30797-1
pubmed: 31870811
Conforti, F. et al. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 19, 737–746 (2018).
doi: 10.1016/S1470-2045(18)30261-4
pubmed: 29778737
Jaillon, S. et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat. Rev. Cancer 20, 485–503 (2020).
doi: 10.1038/s41568-020-0281-y
pubmed: 32694624
Li, M. J. et al. Change in neutrophil to lymphocyte ratio during immunotherapy treatment is a non-linear predictor of patient outcomes in advanced cancers. J. Cancer Res. Clin. 145, 2541–2546 (2019).
doi: 10.1007/s00432-019-02982-4
Valero, C. et al. Pretreatment neutrophil-to-lymphocyte ratio and mutational burden as biomarkers of tumor response to immune checkpoint inhibitors. Nat. Commun. 12, 729 (2021).
doi: 10.1038/s41467-021-20935-9
pubmed: 33526794
pmcid: 7851155
Kuai, J., Yang, F., Li, G. J., Fang, X. J. & Gao, B. Q. In vitro-activated tumor-specific T lymphocytes prolong the survival of patients with advanced gastric cancer: a retrospective cohort study. Onco Targets Ther. 9, 3763–3770 (2016).
pubmed: 27382313
pmcid: 4922768
Ikeguchi, A., Machiorlatti, M. & Vesely, S. K. Disparity in outcomes of melanoma adjuvant immunotherapy by demographic profile. Melanoma Manag 7, MMT43 (2020).
doi: 10.2217/mmt-2020-0002
pubmed: 32821375
pmcid: 7426750
Jurasz, P., Alonso-Escolano, D. & Radomski, M. W. Platelet–cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br. J. Pharmacol. 143, 819–826 (2004).
doi: 10.1038/sj.bjp.0706013
pubmed: 15492016
pmcid: 1575943
Gupta, D. & Lis, C. G. Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature. Nutr. J. 9, 69 (2010).
Caro, J. J., Salas, M., Ward, A. & Goss, G. Anemia as an independent prognostic factor for survival in patients with cancer—a systematic, quantitative review. Cancer 91, 2214–2221 (2001).
doi: 10.1002/1097-0142(20010615)91:12<2214::AID-CNCR1251>3.0.CO;2-P
pubmed: 11413508
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
doi: 10.1016/j.cell.2011.02.013
pubmed: 21376230
Peng, D. et al. Prognostic significance of HALP (hemoglobin, albumin, lymphocyte and platelet) in patients with bladder cancer after radical cystectomy. Sci Rep. 8, 794 (2018).
doi: 10.1038/s41598-018-19146-y
pubmed: 29335609
pmcid: 5768698
Bindea, G., Mlecnik, B., Fridman, W. H., Pages, F. & Galon, J. Natural immunity to cancer in humans. Curr. Opin. Immunol. 22, 215–222 (2010).
doi: 10.1016/j.coi.2010.02.006
pubmed: 20207124
Harrell, F. E. Jr., Lee, K. L. & Mark, D. B. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15, 361–387 (1996).
doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
pubmed: 8668867
Steyerberg, E. W. et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 21, 128–138 (2010).
doi: 10.1097/EDE.0b013e3181c30fb2
pubmed: 20010215
pmcid: 3575184
Gurjao, C., Tsukrov, D., Imakaev, M., Luquette, L. J. & Mirny, L. A. Limited evidence of tumour mutational burden as a biomarker of response to immunotherapy. Preprint at https://www.biorxiv.org/content/10.1101/2020.09.03.260265v2 (2020).
Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).
doi: 10.1038/s41591-018-0014-x
pubmed: 29686425
pmcid: 5998822
Krishna, C. et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 39, 662–677 (2021).
doi: 10.1016/j.ccell.2021.03.007
pubmed: 33861994
pmcid: 8268947
Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).
doi: 10.1126/science.abb9847
pubmed: 33303615
pmcid: 8883579
Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020).
doi: 10.1038/s41586-020-2134-y
pubmed: 32269339
pmcid: 7787191
Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).
doi: 10.1016/j.cell.2018.10.038
pubmed: 30388456
pmcid: 6641984
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).
doi: 10.1126/science.aan4236
pubmed: 29097493
Krishna, C., Chowell, D., Gonen, M., Elhanati, Y. & Chan, T. A. Genetic and environmental determinants of human TCR repertoire diversity. Immun. Ageing 17, 26 (2020).
doi: 10.1186/s12979-020-00195-9
pubmed: 32944053
pmcid: 7487954
Braun, D. A. et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat. Med. 26, 909–918 (2020).
doi: 10.1038/s41591-020-0839-y
pubmed: 32472114
pmcid: 7499153
Miao, D. et al. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat. Genet. 50, 1271–1281 (2018).
doi: 10.1038/s41588-018-0200-2
pubmed: 30150660
pmcid: 6119118
Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).
doi: 10.1038/nature23477
pubmed: 28783722
pmcid: 5870757
Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).
doi: 10.1056/NEJMoa1604958
pubmed: 27433843
pmcid: 5007206
Skoulidis, F. et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 8, 822–835 (2018).
doi: 10.1158/2159-8290.CD-18-0099
pubmed: 29773717
pmcid: 6030433
Samstein, R. M. et al. Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. Nat. Cancer 1, 1188–1203 (2020).
doi: 10.1038/s43018-020-00139-8
pubmed: 33834176
pmcid: 8023400
Wang, F. et al. Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types. JAMA Oncol. 5, 1504–1506 (2019).
doi: 10.1001/jamaoncol.2019.2963
pubmed: 31415061
pmcid: 6696731
Amin, M. B. et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more ‘personalized’ approach to cancer staging. CA Cancer J. Clin. 67, 93–99 (2017).
doi: 10.3322/caac.21388
pubmed: 28094848
Zhou, J. et al. Analysis of tumor genomic pathway alterations using broad-panel next-generation sequencing in surgically resected lung adenocarcinoma. Clin. Cancer Res. 25, 7475–7484 (2019).
doi: 10.1158/1078-0432.CCR-19-1651
pubmed: 31455678
pmcid: 6911636
Shen, R. L. & Seshan, V. E. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 44, e131 (2016).
Niu, B. F. et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics 30, 1015–1016 (2014).
doi: 10.1093/bioinformatics/btt755
pubmed: 24371154
Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33, 1152–1158 (2015).
doi: 10.1038/nbt.3344
pubmed: 26372948
pmcid: 4747795
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
doi: 10.1093/bioinformatics/btq033
pubmed: 20110278
pmcid: 2832824
Pierini, F. & Lenz, T. L. Divergent allele advantage at human MHC genes: signatures of past and ongoing selection. Mol. Biol. Evol. 35, 2145–2158 (2018).
Robinson, J. et al. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 43, D423–D431 (2015).
doi: 10.1093/nar/gku1161
pubmed: 25414341
Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
doi: 10.1093/nar/gkx1098
pubmed: 29155950
Grantham, R. Amino acid difference formula to help explain protein evolution. Science 185, 862–864 (1974).
doi: 10.1126/science.185.4154.862
pubmed: 4843792
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
doi: 10.1093/nar/gkh340
pubmed: 15034147
pmcid: 390337
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Saito, T. & Rehmsmeier, M. Precrec: fast and accurate precision-recall and ROC curve calculations in R. Bioinformatics 33, 145–147 (2017).
doi: 10.1093/bioinformatics/btw570
pubmed: 27591081
Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics.12, 77 (2011).
doi: 10.1186/1471-2105-12-77
pubmed: 21414208
pmcid: 3068975
Schroder, M. S., Culhane, A. C., Quackenbush, J. & Haibe-Kains, B. survcomp: an R/Bioconductor package for performance assessment and comparison of survival models. Bioinformatics 27, 3206–3208 (2011).
doi: 10.1093/bioinformatics/btr511
pubmed: 21903630
pmcid: 3208391
Mogensen, U. B., Ishwaran, H. & Gerds, T. A. Evaluating random forests for survival analysis using prediction error curves. J. Stat. Softw. 50, 1–23 (2012).
doi: 10.18637/jss.v050.i11
pubmed: 25317082
pmcid: 4194196