Characterizing the spatial signal of environmental DNA in river systems using a community ecology approach.


Journal

Molecular ecology resources
ISSN: 1755-0998
Titre abrégé: Mol Ecol Resour
Pays: England
ID NLM: 101465604

Informations de publication

Date de publication:
May 2022
Historique:
revised: 18 09 2021
received: 26 07 2020
accepted: 19 10 2021
pubmed: 2 11 2021
medline: 7 4 2022
entrez: 1 11 2021
Statut: ppublish

Résumé

Environmental DNA (eDNA) is gaining a growing popularity among scientists but its applicability to biodiversity research and management remains limited in river systems by the lack of knowledge about the spatial extent of the downstream transport of eDNA. Here, we assessed the ability of eDNA inventories to retrieve spatial patterns of fish assemblages along two large and species-rich Neotropical rivers. We first examined overall community variation with distance through the distance decay of similarity and compared this pattern to capture-based samples. We then considered previous knowledge on individual species distributions, and compared it to the eDNA inventories for a set of 53 species. eDNA collected from 28 sites in the Maroni and 25 sites in the Oyapock rivers permitted to retrieve a decline of species similarity with increasing distance between sites. The distance decay of similarity derived from eDNA was similar and even more pronounced than that obtained with capture-based methods (gill-nets). In addition, the species upstream-downstream distribution range derived from eDNA matched to the known distribution of most species. Our results demonstrate that environmental DNA does not represent an integrative measure of biodiversity across the whole upstream river basin but provides a relevant picture of local fish assemblages. Importantly, the spatial signal gathered from eDNA was therefore comparable to that gathered with local capture-based methods, which describes fish fauna over a few hundred metres.

Identifiants

pubmed: 34724352
doi: 10.1111/1755-0998.13544
doi:

Substances chimiques

DNA, Environmental 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1274-1283

Subventions

Organisme : DGTM Guyane
ID : DISTDET
Organisme : DRIIHM
ID : ANR-11-LABX-0010
Organisme : CEBA
ID : ANR-10-LABX-25-01
Organisme : TULIP
ID : ANR-10-LABX-0041
Organisme : ANR DEBIT
ID : ANR-17-CE02-0007-01

Informations de copyright

© 2021 John Wiley & Sons Ltd.

Références

Araújo, E. S., Marques, E. E., Freitas, I. S., Neuberger, A. L., Fernandes, R., & Pelicice, F. M. (2013). Changes in distance decay relationships after river regulation: Similarity among fish assemblages in a large Amazonian river. Ecology of Freshwater Fish, 22(4), 543-552. https://doi.org/10.1111/eff.12054
Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics, 17(1), 1-17. https://doi.org/10.1007/s10592-015-0775-4
Biggs, J., Ewald, N., Valentini, A., Gaboriaud, C., Dejean, T., Griffiths, R. A., Foster, J., Wilkinson, J. W., Arnell, A., Brotherton, P., Williams, P., & Dunn, F. (2015). Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biological Conservation, 183, 19-28. https://doi.org/10.1016/j.biocon.2014.11.029
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., & Coissac, E. (2016). obitools: A unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources, 16(1), 176-182.
Brosse, S., Grenouillet, G., Gevrey, M., Khazraie, K., & Tudesque, L. (2011). Small-scale gold mining erodes fish assemblage structure in small Neotropical streams. Biodiversity and Conservation, 20(5), 1013-1026. https://doi.org/10.1007/s10531-011-0011-6
Cantera, I., Cilleros, K., Valentini, A., Cerdan, A., Dejean, T., Iribar, A., Taberlet, P., Vigouroux, R., & Brosse, S. (2019). Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Scientific Reports, 9(1), https://doi.org/10.1038/s41598-019-39399-5
Carmona, C. P., Tamme, R., Pärtel, M., de Bello, F., Brosse, S., Capdevila, P., González-M., R., González-Suárez, M., Salguero-Gómez, R., Vásquez-Valderrama, M., & Toussaint, A. (2021). Erosion of global functional diversity across the tree of life. Science Advances, 7(13), eabf2675. https://doi.org/10.1126/sciadv.abf2675
Cilleros, K., Valentini, A., Allard, L., Dejean, T., Etienne, R., Grenouillet, G., Iribar, A., Taberlet, P., Vigouroux, R., & Brosse, S. (2019). Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes. Molecular Ecology Resources, 19(1), 27-46. https://doi.org/10.1111/1755-0998.12900
Civade, R., Dejean, T., Valentini, A., Roset, N., Raymond, J.-C., Bonin, A., Taberlet, P., & Pont, D. (2016). Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS One, 11(6), e0157366. https://doi.org/10.1371/journal.pone.0157366
De Barba, M., Miquel, C., Boyer, F., Mercier, C., Rioux, D., Coissac, E., & Taberlet, P. (2014). DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Molecular Ecology Resources, 14(2), 306-323. https://doi.org/10.1111/1755-0998.12188
Deiner, K., & Altermatt, F. (2014). Transport distance of invertebrate environmental DNA in a natural river. PLoS One, 9(2), e88786. https://doi.org/10.1371/journal.pone.0088786
Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J.-C., & Altermatt, F. (2016). Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nature Communications, 7, 12544. https://doi.org/10.1038/ncomms12544
Eichmiller, J. J., Best, S. E., & Sorensen, P. W. (2016). Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environmental Science & Technology, 50(4), 1859-1867. https://doi.org/10.1021/acs.est.5b05672
Evans, N. T., Li, Y., Renshaw, M. A., Olds, B. P., Deiner, K., Turner, C. R., Jerde, C. L., Lodge, D. M., Lamberti, G. A., & Pfrender, M. E. (2017). Fish community assessment with eDNA metabarcoding: Effects of sampling design and bioinformatic filtering. Canadian Journal of Fisheries and Aquatic Sciences, 74(9), 1362-1374. https://doi.org/10.1139/cjfas-2016-0306
Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples. Biology Letters, 4(4), 423-425. https://doi.org/10.1098/rsbl.2008.0118
Gallay, M., Martinez, J., Allo, S., Mora, A., Cochonneau, G., Gardel, A., & Laraque, A. (2018). Impact of land degradation from mining activities on the sediment fluxes in two large rivers of French Guiana. Land Degradation & Development, 29(12), 4323-4336. https://doi.org/10.1002/ldr.3150
Goldberg, C. S., Pilliod, D. S., Arkle, R. S., & Waits, L. P. (2011). Molecular detection of vertebrates in stream water: a demonstration using rocky mountain tailed frogs and Idaho giant salamanders. PLoS One, 6(7), e22746. https://doi.org/10.1371/journal.pone.0022746
Hammond, D. S., Gond, V., de Thoisy, B., Forget, P.-M., & DeDijn, B. P. E. (2007). Causes and consequences of a tropical forest gold rush in the Guiana Shield, South America. AMBIO: A Journal of the Human Environment, 36(8), 661-670.
Hänfling, B., Lawson Handley, L., Read, D. S., Hahn, C., Li, J., Nichols, P., Blackman, R. C., Oliver, A., & Winfield, I. J. (2016). Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Molecular Ecology, 25(13), 3101-3119. https://doi.org/10.1111/mec.13660
Hughes, K. (2021). The world’s forgotten fishes. UICN report.
Jackson, D. A., Peres-Neto, P. R., & Olden, J. D. (2001). What controls who is where in freshwater fish communities-The roles of biotic, abiotic, and spatial factors 58, 14.
Jane, S. F., Wilcox, T. M., McKelvey, K. S., Young, M. K., Schwartz, M. K., Lowe, W. H., Letcher, B. H., & Whiteley, A. R. (2015). Distance, flow and PCR inhibition: EDNA dynamics in two headwater streams. Molecular Ecology Resources, 15(1), 216-227. https://doi.org/10.1111/1755-0998.12285
Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). “Sight-unseen” detection of rare aquatic species using environmental DNA: EDNA surveillance of rare aquatic species. Conservation Letters, 4(2), 150-157. https://doi.org/10.1111/j.1755-263X.2010.00158.x
Keck, F., Vasselon, V., Tapolczai, K., Rimet, F., & Bouchez, A. (2017). Freshwater biomonitoring in the information age. Frontiers in Ecology and the Environment, 15(5), 266-274. https://doi.org/10.1002/fee.1490
Le Bail, P. Y., Covain, R., Jegu, M., Fisch-Muller, S., Vigouroux, R., & Keith, P. (2012). Updated checklist of the freshwater and estuarine fishes of French Guiana (Cybium).
Le Bail, P. Y., Keith, P., & Planquette, P. (2000). Atlas des poissons d’eau douce de Guyane. Tome 2, fascicule II: Siluriformes. M.N.H.N./S.P.N.
McCluney, K. E., Poff, N. L. R., Palmer, M. A., Thorp, J. H., Poole, G. C., Williams, B. S., Williams, M. R., & Baron, J. S. (2014). Riverine macrosystems ecology: Sensitivity, resistance, and resilience of whole river basins with human alterations. Frontiers in Ecology and the Environment, 12(1), 48-58. https://doi.org/10.1890/120367
Morlon, H., Chuyong, G., Condit, R., Hubbell, S., Kenfack, D., Thomas, D., Valencia, R., & Green, J. L. (2008). A general framework for the distance-decay of similarity in ecological communities. Ecology Letters, 11(9), 904-917. https://doi.org/10.1111/j.1461-0248.2008.01202.x
Muneepeerakul, R., Bertuzzo, E., Lynch, H. J., Fagan, W. F., Rinaldo, A., & Rodriguez-Iturbe, I. (2008). Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin. Nature, 453(7192), 220-222. https://doi.org/10.1038/nature06813
Murienne, J., Cantera, I., Cerdan, A., Cilleros, K., Decotte, J.-B., Dejean, T., Vigouroux, R., & Brosse, S. (2019). Aquatic eDNA for monitoring French Guiana biodiversity. Biodiversity Data Journal, 7, e37518. https://doi.org/10.3897/BDJ.7.e37518
Murphy, B. R., & Willis, D. W. (1996). Fisheries techniques. American Fisheries Society Bethesda.
Nakagawa, H., Yamamoto, S., Sato, Y., Sado, T., Minamoto, T., & Miya, M. (2018). Comparing local- and regional-scale estimations of the diversity of stream fish using eDNA metabarcoding and conventional observation methods. Freshwater Biology, 63(6), 569-580. https://doi.org/10.1111/fwb.13094
Nekola, J. C., & White, P. S. (1999). The distance decay of similarity in biogeography and ecology. Journal of Biogeography, 26(4), 867-878. https://doi.org/10.1046/j.1365-2699.1999.00305.x
Olds, B. P., Jerde, C. L., Renshaw, M. A., Li, Y., Evans, N. T., Turner, C. R., & Lamberti, G. A. (2016). Estimating species richness using environmental DNA. Ecology and Evolution, 6(12), 4214-4226. https://doi.org/10.1002/ece3.2186
Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2014). Factors influencing detection of eDNA from a stream-dwelling amphibian. Molecular Ecology Resources, 14(1), 109-116. https://doi.org/10.1111/1755-0998.12159
Planquette, P., Keith, P., & Le Bail, P. Y. (1996). Atlas des poissons d’eau douce de Guyane (tome 1), Vol. 22. IEBG - M.N.H.N., INRA, CSP, Min. Env.
Pont, D., Rocle, M., Valentini, A., Civade, R., Jean, P., Maire, A., Roset, N., Schabuss, M., Zornig, H., & Dejean, T. (2018). Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-018-28424-8
Rees, H. C., Gough, K. C., Middleditch, D. J., Patmore, J. R. M., & Maddison, B. C. (2015). Applications and limitations of measuring environmental DNA as indicators of the presence of aquatic animals. Journal of Applied Ecology, 52(4), 827-831. https://doi.org/10.1111/1365-2664.12467
Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M., & Gough, K. C. (2014). REVIEW: The detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology. Journal of Applied Ecology, 51(5), 1450-1459. https://doi.org/10.1111/1365-2664.12306
Rham, M., Thibault, P., Shapiro, A., Smartt, T., Paloeng, C., Crabbe, S., Joubert, P. (2017). Monitoring the impact of gold mining on the forest cover and freshwater in the Guiana Shield (p. 20).
Schnell, I. B., Bohmann, K., & Gilbert, M. T. P. (2015). Tag jumps illuminated-Reducing sequence-to-sample misidentifications in metabarcoding studies. Molecular Ecology Resources, 15(6), 1289-1303. https://doi.org/10.1111/1755-0998.12402
Seymour, M., Durance, I., Cosby, B. J., Ransom-Jones, E., Deiner, K., Ormerod, S. J., Colbourne, J. K., Wilgar, G., Carvalho, G. R., de Bruyn, M., Edwards, F., Emmett, B. A., Bik, H. M., & Creer, S. (2018). Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Communications Biology, 1(1), 4. https://doi.org/10.1038/s42003-017-0005-3
Soininen, J., McDonald, R., & Hillebrand, H. (2007). The distance decay of similarity in ecological communities. Ecography, 30(1), 3-12. https://doi.org/10.1111/j.0906-7590.2007.04817.x
Su, G., Logez, M., Xu, J., Tao, S., Villéger, S., & Brosse, S. (2021). Human impacts on global freshwater fish biodiversity. Science, 371(6531), 835. https://doi.org/10.1126/science.abd3369
Taberlet, P., Bonin, A., Zinger, L., & Coissac, E. (2018). Environmental DNA for biodiversity research and monitoring. Oxford University Press.
Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z. (2012). Estimation of fish biomass using environmental DNA. PLoS One, 7(4), e35868. https://doi.org/10.1371/journal.pone.0035868
Tejerina-Garro, F. L., & De MéRona, B. (2001). Gill net sampling standardisation in large rivers of French Guiana (South America). Bulletin Français de La Pêche et de La Pisciculture, 357-360, 227-240. https://doi.org/10.1051/kmae/2001046
Tonn, W. M. (1990). Climate change and fish communities: a conceptual framework. Transactions of the American Fisheries Society, 119(2), 337-352.
Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P. F., Bellemain, E., Besnard, A., Coissac, E., Boyer, F., Gaboriaud, C., Jean, P., Poulet, N., Roset, N., Copp, G. H., Geniez, P., Pont, D., Argillier, C., Baudoin, J.-M., … Dejean, T. (2016). Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular Ecology, 25(4), 929-942. https://doi.org/10.1111/mec.13428
Zinger, L., Donald, J., Brosse, S., Gonzalez, M. A., Iribar, A., Leroy, C., Lopes, C. M. (2020). Advances and prospects of environmental DNA in neotropical rainforests. In A. Dumbrell, E. Turner & T. Fayle (Eds.), Advances in ecological research (Vol. 62, pp. 331-373). Elsevier. https://doi.org/10.1016/bs.aecr.2020.01.001

Auteurs

Isabel Cantera (I)

Laboratoire Evolution et Diversité Biologique, Université Toulouse III Paul Sabatier, Toulouse, France.

Jean-Baptiste Decotte (JB)

Vigilife, Le Bourget-du-Lac, France.

Tony Dejean (T)

Vigilife, Le Bourget-du-Lac, France.
Spygen, Le Bourget-du-Lac, France.

Jérôme Murienne (J)

Laboratoire Evolution et Diversité Biologique, Université Toulouse III Paul Sabatier, Toulouse, France.

Régis Vigouroux (R)

Laboratoire Environnement de Petit Saut, Hydreco, Kourou Cedex, French Guiana.

Alice Valentini (A)

Spygen, Le Bourget-du-Lac, France.

Sébastien Brosse (S)

Laboratoire Evolution et Diversité Biologique, Université Toulouse III Paul Sabatier, Toulouse, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH