Inferring primase-DNA specific recognition using a data driven approach.


Journal

Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011

Informations de publication

Date de publication:
18 11 2021
Historique:
accepted: 04 10 2021
revised: 01 10 2021
received: 23 08 2021
pubmed: 1 11 2021
medline: 24 12 2021
entrez: 31 10 2021
Statut: ppublish

Résumé

DNA-protein interactions play essential roles in all living cells. Understanding of how features embedded in the DNA sequence affect specific interactions with proteins is both challenging and important, since it may contribute to finding the means to regulate metabolic pathways involving DNA-protein interactions. Using a massive experimental benchmark dataset of binding scores for DNA sequences and a machine learning workflow, we describe the binding to DNA of T7 primase, as a model system for specific DNA-protein interactions. Effective binding of T7 primase to its specific DNA recognition sequences triggers the formation of RNA primers that serve as Okazaki fragment start sites during DNA replication.

Identifiants

pubmed: 34718733
pii: 6414050
doi: 10.1093/nar/gkab956
pmc: PMC8599759
doi:

Substances chimiques

DNA 9007-49-2
DNA Primase EC 2.7.7.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

11447-11458

Informations de copyright

© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.

Références

Nat Methods. 2009 Apr;6(4):283-9
pubmed: 19305407
J Biol Chem. 1996 Aug 30;271(35):21398-405
pubmed: 8702921
Nature. 2007 Jun 14;447(7146):799-816
pubmed: 17571346
Cell. 2015 Apr 9;161(2):307-18
pubmed: 25843630
Proc Natl Acad Sci U S A. 1981 Jan;78(1):205-9
pubmed: 6454135
Nucleic Acids Res. 2015 Jan;43(Database issue):D117-22
pubmed: 25378322
Cold Spring Harb Perspect Biol. 2013 Feb 01;5(2):
pubmed: 23378587
J Vis Exp. 2019 Oct 8;(152):
pubmed: 31657797
Science. 2007 Jan 12;315(5809):233-7
pubmed: 17218526
J Biol Chem. 1979 Oct 25;254(20):10483-9
pubmed: 226545
Science. 2007 Jun 8;316(5830):1497-502
pubmed: 17540862
Open Biol. 2016 Dec;6(12):
pubmed: 28003473
Nat Biotechnol. 2006 Nov;24(11):1429-35
pubmed: 16998473
Cell. 2011 Dec 9;147(6):1408-19
pubmed: 22153082
Cell. 2008 Jun 27;133(7):1277-89
pubmed: 18585360
Science. 2002 Oct 25;298(5594):799-804
pubmed: 12399584
Nature. 2013 Oct 3;502(7469):53-8
pubmed: 24048476
FEBS J. 2007 Mar;274(5):1265-79
pubmed: 17266726
Nucleic Acids Res. 2009 Dec;37(22):e151
pubmed: 19843614
J Biol Chem. 2001 Dec 28;276(52):49419-26
pubmed: 11673465
Methods Mol Biol. 2014;1196:255-78
pubmed: 25151169
Science. 2010 Dec 24;330(6012):1787-97
pubmed: 21177974
Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7957-62
pubmed: 9653122
J Bacteriol. 2006 Feb;188(4):1534-9
pubmed: 16452437
Nature. 2009 Oct 29;461(7268):1248-53
pubmed: 19865164
Brief Funct Genomics. 2015 Jan;14(1):17-29
pubmed: 25431149
Proc Natl Acad Sci U S A. 2010 May 18;107(20):9099-104
pubmed: 20439755
Mol Microbiol. 2007 Mar;63(6):1629-39
pubmed: 17367384
Annu Rev Biochem. 2010;79:233-69
pubmed: 20334529
Cell. 2014 Sep 11;158(6):1431-1443
pubmed: 25215497
Cold Spring Harb Symp Quant Biol. 1979;43 Pt 1:427-40
pubmed: 225112
Science. 2000 Dec 22;290(5500):2306-9
pubmed: 11125145
Mol Cell. 2005 Nov 11;20(3):391-401
pubmed: 16285921
Cell. 2013 Jan 17;152(1-2):327-39
pubmed: 23332764
Structure. 2005 Jun;13(6):839-44
pubmed: 15939015
Nature. 1973 Sep 28;245(5422):195-7
pubmed: 4582884
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4544-9
pubmed: 20176964
Anal Biochem. 2014 Jul 1;456:53-60
pubmed: 24732113
Nucleic Acids Res. 2010 Jul;38(13):4372-83
pubmed: 20350931
Annu Rev Biochem. 2001;70:39-80
pubmed: 11395402
Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):867-72
pubmed: 16418267
Science. 2009 Jun 26;324(5935):1720-3
pubmed: 19443739
J Biol Chem. 1991 Dec 5;266(34):23240-50
pubmed: 1744119
Genome Res. 2007 Jun;17(6):877-85
pubmed: 17179217
Nucleic Acids Res. 2013 Apr;41(8):4507-17
pubmed: 23430154
Nat Biotechnol. 2010 Sep;28(9):970-5
pubmed: 20802496
Front Genet. 2018 Dec 10;9:613
pubmed: 30619452
iScience. 2018 Apr 27;2:141-147
pubmed: 30428370
Nat Biotechnol. 2011 Jun 07;29(6):480-3
pubmed: 21654662
Nat Struct Mol Biol. 2008 Feb;15(2):163-9
pubmed: 18193061
J Biol Chem. 1997 Feb 28;272(9):5943-51
pubmed: 9038214
Proc Natl Acad Sci U S A. 1972 Sep;69(9):2682-6
pubmed: 4560695
Mol Cell. 2009 Jan 16;33(1):97-108
pubmed: 19150431
Science. 2004 Oct 22;306(5696):636-40
pubmed: 15499007
Biochemistry. 2000 Feb 1;39(4):736-44
pubmed: 10651639
Cell. 2008 Jan 25;132(2):311-22
pubmed: 18243105

Auteurs

Adam Soffer (A)

Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
School of Computer and Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Sarah A Eisdorfer (SA)

Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Morya Ifrach (M)

Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Stefan Ilic (S)

Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Ariel Afek (A)

Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Hallel Schussheim (H)

Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Dan Vilenchik (D)

Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
School of Computer and Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Barak Akabayov (B)

Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Articles similaires

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria
Humans Artificial Intelligence Neoplasms Prognosis Image Processing, Computer-Assisted

Classifications MeSH