Metabolic-based insecticide resistance mechanism and ecofriendly approaches for controlling of beet armyworm Spodoptera exigua: a review.

Beet armyworm Biotechnologies Ecofriendly IPM Metabolic base insecticide resistance

Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Jan 2022
Historique:
received: 04 08 2021
accepted: 06 10 2021
pubmed: 29 10 2021
medline: 11 1 2022
entrez: 28 10 2021
Statut: ppublish

Résumé

The beet army worm, Spodoptera exigua, is a widely distributed polyphagous pest of economically important crops worldwide. The management of this pest insect continues to face many challenges. Despite synthetic chemicals posing a serious threat to the environment, these remain the conventional approach for controlling S. exigua in the field. An over-reliance on chemical control has not only led to selection for resistance to insecticides and to a reduction of natural enemies, but has also polluted various components of ecosystem. Given these increasing pressures on the ecosystem, there is a need to implement integrated pest management (IPM) approaches exploiting a wider range of tools (biotechnological approaches, microbial control, biological control, cultural control, and use of host plant resistance) for an alternative to chemical control. The IPM approach can not only reduce the hazard of chemical residues in the environment and associated health problems, but may also provide best strategies to control insect pests. This review synthesizes published information on insecticide resistance of S. exigua and explores alternative IPM approaches to control S. exigua.

Identifiants

pubmed: 34709552
doi: 10.1007/s11356-021-16974-w
pii: 10.1007/s11356-021-16974-w
doi:

Substances chimiques

Insecticides 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1746-1762

Subventions

Organisme : key r&d program of zhejiang province
ID : 2018C02032

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Ahmad M, Arif IM (2010) Resistance of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) to endosulfan, organophosphorus and pyrethroid insecticides in Pakistan. Crop Prot 29:1428–1433. https://doi.org/10.1016/j.cropro.2010.07.025
doi: 10.1016/j.cropro.2010.07.025
Ahmad M, Farid A, Saeed M (2018) Resistance to new insecticides and their synergism in Spodoptera exigua (Lepidoptera: Noctuidae) from Pakistan. Crop Prot 107:79–86. https://doi.org/10.1016/j.cropro.2017.12.028
doi: 10.1016/j.cropro.2017.12.028
Ahmad M, Iqbal Arif M, Ahmad M (2007) Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Prot 26:809–817. https://doi.org/10.1016/j.cropro.2006.07.006
doi: 10.1016/j.cropro.2006.07.006
Aldosari SA, Watson TF, Sivasupramaniam S, Osman AA (1996) Susceptibility of field populations of beet armyworm (Lepidoptera: Noctuidae) to cyfluthrin, methomyl, and profenofos, and selection for resistance to cyfluthrin. J Econ Entomol 42:217–222. https://doi.org/10.1093/jee/89.6.1359
doi: 10.1093/jee/89.6.1359
Amoabeng BW, Gurr GM, Gitau CW et al (2013) Tri-trophic insecticidal effects of African plants against cabbage pests. PLoS ONE 8:e78651. https://doi.org/10.1371/journal.pone.0078651
doi: 10.1371/journal.pone.0078651
An R, Orellana D, Phelan LP et al (2016) Entomopathogenic nematodes induce systemic resistance in tomato against Spodoptera exigua, Bemisia tabaci and Pseudomonas syringae. Biol Control 93:24–29. https://doi.org/10.1016/j.biocontrol.2015.11.001
doi: 10.1016/j.biocontrol.2015.11.001
Ant T, Koukidou M, Rempoulakis P et al (2012) Control of the olive fruit fly using genetics-enhanced sterile insect technique. BMC Biol 19(10):51. https://doi.org/10.1186/1741-7007-10-51
doi: 10.1186/1741-7007-10-51
Arain MS, Shakeel M, Elzaki ME, Abdalla FM et al (2018) Association of detoxification enzymes with butene-fipronil in larvae and adults of Drosophilia melanogaster. Environ Sci Pollut Res 25:10006–10013
doi: 10.1007/s11356-018-1202-4
Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844. https://doi.org/10.1146/annurev.ento.47.091201.145300
doi: 10.1146/annurev.ento.47.091201.145300
Azidah AA, Sofian-Azirun M (2006) Life history of Spodoptera exigua (Lepidoptera: Noctuidae) on various host plants. Bull Entomol Res 96:613–618. https://doi.org/10.1017/BER2006461
doi: 10.1017/BER2006461
Bassett AR, Tibbit C, Ponting CP, Liu J (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4:220–228
doi: 10.1016/j.celrep.2013.06.020
Boaventura D, Martin M, Pozzebon A et al (2020) Monitoring of target-site mutations conferring insecticide resistance in Spodoptera frugiperda. Insects 11:545. https://doi.org/10.3390/insects11080545
doi: 10.3390/insects11080545
Brewer MJ, Trumble JT (1994) Beet Armyworm Resistance to Fenvalerate and Methomyl: Resistance Variation and Insecticide synergismI 56:442–448
Calkins CO, Parker AG (2005) Sterile insect quality. In: Sterile insect technique: principles and practice in area-wide integrated pest management 269–296
Campbell PM, Newcomb RD, Russell RJ, Oakeshott JG (1998) Two different amino acid substitutions in the ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance in the sheep blowfly, Lucilia cuprina. Insect Biochem Mol Biol. 28: 139–150 https://doi.org/10.1016/S0965-1748(97)00109-4
Che W, Shi T, Wu Y, Yang Y (2013) Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. J Econ Entomol 106(4):1855–1862. https://doi.org/10.1603/EC13128
doi: 10.1603/EC13128
Chen J, Tang B, Chen H et al (2010) Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by rna interference. PLoS ONE 5(4):e10133. https://doi.org/10.1371/journal.pone.0010133
doi: 10.1371/journal.pone.0010133
Chen Y (2005) Biodiversity and pest management in agroecosystems. J Environ Qual 30(8):e02201. https://doi.org/10.2134/jeq2005.0729
doi: 10.2134/jeq2005.0729
Claudianos C, Russell RJ, Oakeshott JG (1999) The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem Mol Biol 29(8):675–686. https://doi.org/10.1016/S0965-1748(99)00035-1
doi: 10.1016/S0965-1748(99)00035-1
Clement SL, Sharma HC, Muehlbauer FJ et al (2010) Resistance to beet armyworm in a chickpea recombinant inbred line population. J Appl Entomol 134:1–8
doi: 10.1111/j.1439-0418.2009.01411.x
Commonwealth Agricultural Bureaux (CAB) (1972) Distribution maps of pests. Pest: Spodoptera exigua (Hübner). London. Series A, Map no. 302.
Cordeiro EMG, Corrêa AS, Venzon M, Guedes RNC (2010) Insecticide survival and behavioral avoidance in the lacewings Chrysoperla externa and Ceraeochrysa cubana. Chemosphere 81(10):1352–1357. https://doi.org/10.1016/j.chemosphere.2010.08.021
doi: 10.1016/j.chemosphere.2010.08.021
Cordova D, Benner EA, Sacher MD et al (2006) Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic Biochem Physiol 84:196–214. https://doi.org/10.1016/j.pestbp.2005.07.005
doi: 10.1016/j.pestbp.2005.07.005
Dawkar V V., Chikate YR, Lomate PR, et al (2013) Molecular insights into resistance mechanisms of lepidopteran insect pests against toxicants. J. Proteome Res. 1–15
Diaz R, Knutson A, Bernal JS (2004) Effect of the red imported fire ant on cotton aphid population density and predation of bollworm and beet armyworm eggs. J Econ Entomol 97:222–229. https://doi.org/10.1093/jee/97.2.222
doi: 10.1093/jee/97.2.222
Diez MC, Gallardo F, Tortella G, et al (2012) Chlorophenol degradation in soil columns inoculated with Anthracophyllum discolor immobilized on wheat grains. J Environ Manage. S83-7 https://doi.org/10.1016/j.jenvman.2010.09.024
Ding Y, Li H, Chen L-L, Xie K (2016) Recent advances in genome editing using CRISPR/Cas9. Front Plant Sci 7:27252719. https://doi.org/10.3389/fpls.2016.00703
doi: 10.3389/fpls.2016.00703
Divya K, Sankar M (2009) Entomopathogenic nematodes in pest management. Indian J Sci Technol. https://doi.org/10.17485/ijst/2009/v2i7/29499
Downes S, Parker TL, Mahon RJ (2009) Frequency of alleles conferring resistance to the Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in Australian populations of Helicoverpa punctigera (Lepidoptera: Noctuidae) from 2002 to 2006. J Econ Entomol 102(2):733–742. https://doi.org/10.1603/0022-0493(2007)100{[}1844:FOACRT]2.0.CO;2
doi: 10.1603/0022-0493(2007)100{[}1844:FOACRT]2.0.CO;2
Evans EW (2009) Lady beetles as predators of insects other than Hemiptera. Biol Control 46:590–596
Farnham AW, Sawicki RM (1976) Development of resistance to pyrethroids in insects resistant to other insecticides. Pestic Sci 7:278–282. https://doi.org/10.1002/ps.2780070312
doi: 10.1002/ps.2780070312
Feng HQ, Wu KM, Cheng DF, Guo YY (2003) Radar observations of the autumn migration of the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China. Bull Entomol Res 93(2):115–124. https://doi.org/10.1079/BER2002221
doi: 10.1079/BER2002221
Ferrer F (2001) Biological control of agricultural insect pest in Venezuela; advances, achievements, and future perspectives. 67–74
Feyereisen R (2011) Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochim Biophys Acta - Proteins Proteomics 1814:19–28
doi: 10.1016/j.bbapap.2010.06.012
Feyereisen R (2005) Insect cytochrome P450. In: Comprehensive molecular insect science. pp 1–77
Feyereisen R (2006) Evolution of insect P450. Biochem Soc Trans 1866:141–154. https://doi.org/10.1042/BST0341252
doi: 10.1042/BST0341252
FIELD LM, (2000) Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer). Biochem J 3:863–868. https://doi.org/10.1042/bj3490863
doi: 10.1042/bj3490863
Lm F, Rl B, Tyler-Smith C, Al D (1999) Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem J 3:737–742. https://doi.org/10.1042/0264-6021:3390737
doi: 10.1042/0264-6021:3390737
Field LM, Devonshire AL (1997) Structure and organization of amplicons containing the E4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer). Biochem J 3:867–871. https://doi.org/10.1042/bj3220867
doi: 10.1042/bj3220867
Gao M, Mu W, Wang W et al (2014) Resistance mechanisms and risk assessment regarding indoxacarb in the beet armyworm, Spodoptera exigua. Phytoparasitica 42:585–594
doi: 10.1007/s12600-014-0396-3
Garzón A, Medina P, Amor F et al (2015) Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae). Chemosphere 132:87–93
doi: 10.1016/j.chemosphere.2015.03.016
Gay H (2012) Before and after Silent Spring : from chemical pesticides to biological control and integrated pest management — Britain, 1945–1980. Ambix. https://doi.org/10.1179/174582312X13345259995930
doi: 10.1179/174582312X13345259995930
Ghumare SS, Mukherjee SN, Sharma RN (1989) Effect of rutin on the neonate sensitivity, dietary utilization and mid-gut carboxylesterase activity of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Proc Anim Sci 98:399–404. https://doi.org/10.1007/BF03179652
doi: 10.1007/BF03179652
Giolo FP, Medina P, Grützmacher AD, Viñuela E (2009) Effects of pesticides commonly used in peach orchards in Brazil on predatory lacewing Chrysoperla carnea under laboratory conditions. BioControl. 54, pages625–635 https://doi.org/10.1007/s10526-008-9197-2
Golikhajeh N, Naseri B, Razmjou J (2016) Effect of geographic population and host cultivar on demographic parameters of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). J Asia Pac Entomol 19:743–751. https://doi.org/10.1016/j.aspen.2016.07.002
doi: 10.1016/j.aspen.2016.07.002
Gong C, Yao X, Yang Q et al (2021) Fitness costs of chlorantraniliprole resistance related to the senpf overexpression in the spodoptera exigua (Lepidoptera: Noctuidae). Int J Mol Sci 22:5027. https://doi.org/10.3390/ijms22095027
doi: 10.3390/ijms22095027
Greenberg SM, Sappington TW, Liu T-X, et al (2006) Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Ann Entomol Soc Am. 94: 566–575 https://doi.org/10.1603/0013-8746(2001)094[0566:falhos]2.0.co;2
Greenberg SM, Showler AT, Liu TX (2005) Effects of neem-based insecticides on beet armyworm (Lepidoptera: Noctuidae). Insect Sci 12:17–23. https://doi.org/10.1111/j.1672-9609.2005.00003.x
doi: 10.1111/j.1672-9609.2005.00003.x
Guedes RNC, Smagghe G, Stark JD, Desneux N (2016) Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu Rev Entomol 61:43–62. https://doi.org/10.1146/annurev-ento-010715-023646
doi: 10.1146/annurev-ento-010715-023646
Guo J, Wu S, Zhang F, et al (2020) Prospects for microbial control of the fall armyworm Spodoptera frugiperda: a review. BioControl pages 647–662
Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139
doi: 10.1016/S0021-9258(19)42083-8
Hafeez M, Liu S, Jan S et al (2019) Gossypol-induced fitness gain and increased resistance to deltamethrin in beet armyworm, Spodoptera exigua (Hübner). Pest Manag Sci 76:683–693. https://doi.org/10.1002/ps.5165
doi: 10.1002/ps.5165
Hasan W (2010) Evaluation of some insecticides against spotted bollworm, Earias vittella (Fab.) on different okra cultivars. Trends Biosci. 3
Heckel DG (2012) Insecticide resistance after silent spring. Science 337:1612–1614
doi: 10.1126/science.1226994
Heidari R, Devonshire AL, Campbell BE et al (2004) Hydrolysis of organophosphorus insecticides by in vitro modified carboxylesterase E3 from Lucilia cuprina. Insect Biochem Mol Biol 34:353–363. https://doi.org/10.1016/j.ibmb.2004.01.001
doi: 10.1016/j.ibmb.2004.01.001
Hemingway J (2000) The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol 30:1009–1015
doi: 10.1016/S0965-1748(00)00079-5
Hemingway J, Ranson H, Magill A et al (2016) Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet 387:1785–1788. https://doi.org/10.1016/S0140-6736(15)00417-1
doi: 10.1016/S0140-6736(15)00417-1
Hendrichs J, Robinson A (2009) Sterile insect technique. In: Encyclopedia of insects
Hong-Lun Bi, Jun Xu A-JT and Y-PH (2016b) CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera litura. Insect Sci 23:469–477
Hu B, Zhang SH, Ren MM, et al (2017) The expression of Spodoptera exigua P450 and UGT genes: tissue specificity and response to insecticides. Insect Sci. 199–216.
Hurst GW (1964) Meteorological aspects of the migration to Britain of Laphygma exigua and certain other moths on specific occasions. Agric Meteorol 1:271–281
doi: 10.1016/0002-1571(64)90035-4
Hussain S, Sørensen SR, Devers-Lamrani M et al (2009) Characterization of an isoproturon mineralizing bacterial culture enriched from a French agricultural soil. Chemosphere 77:1052–1059. https://doi.org/10.1016/j.chemosphere.2009.09.020
doi: 10.1016/j.chemosphere.2009.09.020
Ishtiaq M, Saleem MA, Razaq M (2012) Monitoring of resistance in Spodoptera exigua (Lepidoptera: Noctuidae) from four districts of the Southern Punjab, Pakistan to four conventional and six new chemistry insecticides. Crop Prot 33:13–20
doi: 10.1016/j.cropro.2011.11.014
Ishtiaq MSM, RM, (2012) Monitoring of resistance in Spodoptera exigua (Lepidoptera: Noctuidae) from four districts of the Southern Punjab, Pakistan to four conventional and six new chemistry insecticides. Crop Prot 33:13–20
doi: 10.1016/j.cropro.2011.11.014
Jarvis DII, Padoch C, Cooper HDD (2013) Managing biodiversity in agricultural ecosystems. 512. https://doi.org/10.7312/jarv13648
Jiang XF, Luo LZ, Sappington TW (2010) Relationship of flight and reproduction in beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), a migrant lacking the oogenesis-flight syndrome. J Insect Physiol y 56:1631. https://doi.org/10.1016/j.jinsphys.2010.06.006
doi: 10.1016/j.jinsphys.2010.06.006
Kadous AA, Ghiasuddin SM, Matsumura F et al (1983) Difference in the picrotoxinin receptor between the cyclodiene-resistant and susceptible strains of the German cockroach. Pestic Biochem Physiol 19:157–166. https://doi.org/10.1016/0048-3575(83)90135-9
doi: 10.1016/0048-3575(83)90135-9
Kang S, Lee HJ, Kim YH et al (2012) Proteomics-based identification and characterization of biotype-specific carboxylesterase 2 putatively associated with insecticide resistance in Bemisia tabaci. J Asia Pac Entomol 15:389–396. https://doi.org/10.1016/j.aspen.2012.03.002
doi: 10.1016/j.aspen.2012.03.002
Kapoor D, Khan A, O’Donnell MJ, Kolosov D (2021) Novel mechanisms of epithelial ion transport: insights from the cryptonephridial system of lepidopteran larvae. Curr. Opin. Insect Sci. 53–61
Karimi-Malati A, Fathipour Y, Talebi AA, Bazoubandi M (2012) Comparative life table parameters of beet armyworm, Spodoptera exigua (Lep.: Noctuidae), on four commercial sugar beet cultivars. J Entomol Soc Iran 32:109–124
Keïta M, Kané F, Thiero O et al (2020) Acetylcholinesterase (ace-1R) target site mutation G119S and resistance to carbamates in Anopheles gambiae (sensu lato) populations from Mali. Parasit Vectors 13:283. https://doi.org/10.1186/s13071-020-04150-x
doi: 10.1186/s13071-020-04150-x
Kerns DL PJ and TT (1998) Resistance of field strains of beet armyworm (Lepidoptera: Noctuidae) from Arizona and California to carbamate insecticides. J Econ Entomol 91:1038–1043
Khan Mz, Law Fcp (2005) Adverse effects of pesticides and related chemicals on enzyme and hormone systems of fish, amphibians and reptiles: a review. Law Proc Pakistan Acad Sci. 42(4)
Klatt BK, Rundlöf M, Smith HG (2016) Maintaining the restriction on neonicotinoids in the European Union—benefits and risks to bees and pollination services. Front Ecol Evol. https://doi.org/10.3389/fevo.2016.00004
doi: 10.3389/fevo.2016.00004
Knox C, Moore SD, Luke GA, Hill MP (2015) Baculovirus-based strategies for the management of insect pests: a focus on development and application in South Africa. Biocontrol Sci Technol 25:1–20
doi: 10.1080/09583157.2014.949222
Kumano N, Haraguchi D, Kohama T (2008) Effect of irradiation on mating performance and mating ability in the West Indian sweetpotato weevil. Euscepes Postfasciatus Entomol Exp Appl 127:229–236. https://doi.org/10.1111/j.1570-7458.2008.00706.x
doi: 10.1111/j.1570-7458.2008.00706.x
Lacey LA, Grzywacz D, Shapiro-Ilan DI et al (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41. https://doi.org/10.1016/j.jip.2015.07.009
doi: 10.1016/j.jip.2015.07.009
Lai T, Li J, Su J (2011) Monitoring of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) resistance to chlorantraniliprole in China. Pestic Biochem Physiol 101:198–205. https://doi.org/10.1016/j.pestbp.2011.09.006
doi: 10.1016/j.pestbp.2011.09.006
Lai T, Su J (2011) Assessment of resistance risk in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) to chlorantraniliprole. Pest Manag Sci 67:1468–1472. https://doi.org/10.1002/ps.2201
doi: 10.1002/ps.2201
Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253. https://doi.org/10.1146/annurev.ento.51.110104.151104
doi: 10.1146/annurev.ento.51.110104.151104
Liu C, Liu Y, Walker WB et al (2013) Identification and functional characterization of sex pheromone receptors in beet armyworm Spodoptera exigua (Hübner). Insect Biochem Mol Biol 43:747–754
doi: 10.1016/j.ibmb.2013.05.009
Liu YH, Chung YC, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256. Isolated from Sewage Appl Environ Microbiol 67:3746–3749. https://doi.org/10.1128/AEM.67.8.3746-3749.2001
doi: 10.1128/AEM.67.8.3746-3749.2001
Liu YJ, Shen JL, Jia B (2002) Occurrence and resistance status of the beet armyworm, Spodoptera exigua (Hubner). Cott Sci 14:305–309
Malekmohammadi M, Galehdari H (2016) Target site insensitivity mutations in the AChE enzyme confer resistance to organophosphorous insecticides in Leptinotarsa decemlineata (Say). Pestic Biochem Physiol 126:85–91. https://doi.org/10.1016/j.pestbp.2015.08.002
doi: 10.1016/j.pestbp.2015.08.002
MIKKOLA (1970) The interpretation of long-range migrations of Spodoptera exigua Hb. (Lepidoptera : Noctuidae). J Anim Ecol 39:593–598
doi: 10.2307/2856
Ming Li, Omar S. Akbari BJW (2017) Highly efficient site-specific mutagenesis in malaria mosquitoes using CRISPR. Genes|Genomes|Genetics 8: 653–658
Nelson DR (2011) Progress in tracing the evolutionary paths of cytochrome P450. Biochim Biophys Acta - Proteins Proteomics 14:14–18. https://doi.org/10.1016/j.bbapap.2010.08.008
doi: 10.1016/j.bbapap.2010.08.008
Nicolas D, Axel D, Jean-Marie D (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106
Oakeshott JG, Farnsworth CA, East PD, et al (2013) How many genetic options for evolving insecticide resistance in heliothine and spodopteran pests? Pest Manag. Sci. 889–96
Oliveira CM, Auad AM, Mendes SM, Frizzas MR (2014) Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot 56:50–54
doi: 10.1016/j.cropro.2013.10.022
Peng Z, Ming G, Wei M et al (2014) Resistant levels of Spodoptera exigua to eight various insecticides in Shandong. China J Pestic Sci 39:7–13
doi: 10.1584/jpestics.D13-053
Peralta C, Palma L (2017) Is the insect world overcoming the efficacy of bacillus thuringiensis? Toxins (Basel).
Pesticides Safety Directorate (2008) Assessment of the impact on crop protection in the UK of the ‘cut-off criteria’ and substitution provisions in the proposed Regulation of the European Parliament and of the Council concerning the placing of plant protection products in the market. Pestic Saf Dir UK, p 46
Pooggin MM (2017) RNAi-mediated resistance to viruses: a critical assessment of methodologies. Curr Opin Virol 26:28–35
doi: 10.1016/j.coviro.2017.07.010
Popp J, Hantos K (2013) The impact of crop protection on agricultural production. Stud Agric Econ. https://doi.org/10.7896/j.1003
doi: 10.7896/j.1003
Qiu L, Hou L, Zhang B, et al (2015) Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. J Invertebr Pathol. 127:47-53 https://doi.org/10.1016/j.jip.2015.02.009
Rabelo MM, Paula-Moraes SV, Pereira EJG, Siegfried BD (2020) Contrasting susceptibility of lepidopteran pests to diamide and pyrethroid insecticides in a region of overwintering and migratory intersection. Pest Manag Sci 76:4240–4247. https://doi.org/10.1002/ps.5984
doi: 10.1002/ps.5984
Ranson H, Edi CVA, Koudou BG, et al (2012) Multiple-insecticide resistance in anopheles gambiae mosquitoes, southern côte d’ivoire. Emerg Infect Dis. 18:1508–11 https://doi.org/10.3201/eid1809.120262
Reddy GV (2011) Comparative effect of integrated pest management and farmers’ standard pest control practice for managing insect pests on cabbage (Brassica spp.). Pest Manag Sci 67:980–985. https://doi.org/10.1002/ps.2142
doi: 10.1002/ps.2142
Riga M, Bajda S, Themistokleous C et al (2017) The relative contribution of target-site mutations in complex acaricide resistant phenotypes as assessed by marker assisted backcrossing in Tetranychus urticae. Sci Rep 7:9202. https://doi.org/10.1038/s41598-017-09054-y
doi: 10.1038/s41598-017-09054-y
Rosell G, Quero C, Coll J, Guerrero A (2008) Biorational insecticides in pest management. J Pestic Sci 33:103–121. https://doi.org/10.1584/jpestics.r08-01
doi: 10.1584/jpestics.r08-01
Saeed S, Sayyed AH, Ahmad I (2010) Effect of host plants on life-history traits of Spodoptera exigua (Lepidoptera: Noctuidae). J Pest Sci. 83: 165–172
Sappington TW, Miller NJ (2017) Editorial overview: Pests and resistance: shedding the albatross of resistance starts by embracing the ecological complexities of its evolution. Curr. Opin. Insect Sci. 21:v–viii
Sarfraz M, Keddie AB, Dosdall LM (2005) Biological control of the diamondback moth, Plutella xylostella: a review. Biocontrol Sci Technol 15:763–789
doi: 10.1080/09583150500136956
Satpathy S, Shivalingaswamy TM, Kumar A et al (2010) Potentiality of Chinese cabbage (Brassica rapa subsp. pekinensis) as a trap crop for diamondback moth (Plutella xylostella) management in cabbage. Indian J Agric Sci 80:238–241
Schuler MA (2011) P450s in plant-insect interactions. Biochim Biophys Acta - Proteins Proteomics 1814:36–45
doi: 10.1016/j.bbapap.2010.09.012
Segal DJ, Meckler JF (2013) Genome engineering at the dawn of the golden age. Annu Rev Genomics Hum Genet 14:135–158. 
Sertkaya E, Bayram A, Kornosor S (2004) Egg and larval parasitoids of the beet armyworm spodoptera exigua on Maize in Turkey. Phytoparasitica 32(3):305–312
Shelton A, Perez C, Tang J, Vandenberg J (1997) Prospects for novel approaches towards management of the diamondback moth. In: The management of diamondback moth and other crucifer pests
SINGH SP, ZIMNIAK P, SAWICKI R, et al (2003) Cloning, expression and biochemical characterization of one Epsilon-class (GST-3) and ten Delta-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class. Biochem J.370: 661–669 https://doi.org/10.1042/bj20021287
Slawik C, Rickmeyer C, Brehm M et al (2017) Glutathione adduct patterns of Michael-acceptor carbonyls. Environ Sci Technol 51:4018–4026. https://doi.org/10.1021/acs.est.6b04981
doi: 10.1021/acs.est.6b04981
Smagghe G, Dhadialla TS, Derycke S, et al (1998) Action of the ecdysteroid agonist tebufenozide in susceptible and artificially selected beet armyworm. Pestic Sci.
Sparks TC, Nauen R (2015) IRAC: Mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122–128. https://doi.org/10.1016/j.pestbp.2014.11.014
doi: 10.1016/j.pestbp.2014.11.014
Su J, Sun XX (2014) High level of metaflumizone resistance and multiple insecticide resistance in field populations of Spodoptera exigua (Lepidoptera: Noctuidae) in Guangdong Province. China Crop Prot 61:58–63. https://doi.org/10.1016/j.cropro.2014.03.013
doi: 10.1016/j.cropro.2014.03.013
Subramanian S, Muthulakshmi M (2016) Entomopathogenic nematodes. In: ecofriendly pest management for food security. 367–410
Sutherland TD, Weir KM, Lacey MJ et al (2002) Enrichment of a microbial culture capable of degrading endosulphate, the toxic metabolite of endosulfan. J Appl Microbiol 92:541–548. https://doi.org/10.1046/j.1365-2672.2002.01559.x
doi: 10.1046/j.1365-2672.2002.01559.x
Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594. https://doi.org/10.1146/annurev.ento.47.091201.145240
doi: 10.1146/annurev.ento.47.091201.145240
Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat. Biotechnol. 199–202
Tabashnik BE, Liesner LR, Ellsworth PC et al (2020) Transgenic cotton and sterile insect releases synergize eradication of pink bollworm a century after it invaded the United States. Proc Natl Acad Sci U S A 118(1):e2019115118. https://doi.org/10.1073/pnas.2019115118
doi: 10.1073/pnas.2019115118
Tang QL, Ma KS, Hou YM, Gao XW (2017) Monitoring insecticide resistance and diagnostics of resistance mechanisms in the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) in China. Pestic Biochem Physiol 143:39–47. https://doi.org/10.1016/j.pestbp.2017.09.013
doi: 10.1016/j.pestbp.2017.09.013
Taylor JE, Riley DG (2008) Artificial infestations of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), used to estimate an economic injury level in tomato. Crop Prot 27:268–274
doi: 10.1016/j.cropro.2007.05.014
Thailayil J, Magnusson K, Godfray HCJ et al (2011) Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci 108:13677–13681. https://doi.org/10.1073/pnas.1104738108
doi: 10.1073/pnas.1104738108
Tian H, Peng H, Yao Q et al (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS ONE 13:e6225. https://doi.org/10.1371/journal.pone.0006225
doi: 10.1371/journal.pone.0006225
Tian X, Liu J, Guo Z et al (2018a) The characteristics of voltage-gated sodium channel and the association with lambda cyhalothrin resistance in Spodoptera exigua. J Asia Pac Entomol 21:1020–1027. https://doi.org/10.1016/j.aspen.2018.07.013
doi: 10.1016/j.aspen.2018.07.013
Tian X, Liu J, Guo Z et al (2018b) The characteristics of voltage-gated sodium channel and the association with lambda cyhalothrin resistance in Spodoptera exigua. J Asia Pac Entomol 21:1020–1027. https://doi.org/10.1016/j.aspen.2018.07.013
doi: 10.1016/j.aspen.2018.07.013
Tian X, Sun X, Su J (2014) Biochemical mechanisms for metaflumizone resistance in beet armyworm, Spodoptera exigua. Pestic Biochem Physiol 113:8–14. https://doi.org/10.1016/j.pestbp.2014.06.010
doi: 10.1016/j.pestbp.2014.06.010
Tindall KV, Siebert MW, Leonard BR et al (2009) Efficacy of Cry1Ac:Cry1F proteins in cotton leaf tissue against fall armyworm, beet armyworm, and Soybean Looper (Lepidoptera: Noctuidae). J Econ Entomol 102:1497–1505. https://doi.org/10.1603/029.102.0414
doi: 10.1603/029.102.0414
Togola A, Boukar O, Belko N, et al (2017) Host plant resistance to insect pests of cowpea (Vigna unguiculata L. Walp.): achievements and future prospects. Euphytica 213:239
Tong F, Coats JR (2012) Quantitative structure-activity relationships of monoterpenoid binding activities to the housefly GABA receptor. Pest Manag Sci 68:1122–1129. https://doi.org/10.1002/ps.3280
doi: 10.1002/ps.3280
Troczka BJ, Williamson MS, Field LM, Davies TGE (2017) Rapid selection for resistance to diamide insecticides in Plutella xylostella via specific amino acid polymorphisms in the ryanodine receptor. Neurotoxicology 60:224–233. https://doi.org/10.1016/j.neuro.2016.05.012
doi: 10.1016/j.neuro.2016.05.012
Ullah F, Gul H, Desneux N et al (2019) Clothianidin-induced sublethal effects and expression changes of vitellogenin and ecdysone receptors genes in the melon aphid, Aphis gossypii. Entomol Gen 39:137–149. https://doi.org/10.1127/entomologia/2019/0865
doi: 10.1127/entomologia/2019/0865
Umbanhowar J, Hastings A (2002) The impact of resource limitation and the phenology of parasitoid attack on the duration of insect herbivore outbreaks. Theor Popul Biol 62:259–269. https://doi.org/10.1006/tpbi.2002.1617
doi: 10.1006/tpbi.2002.1617
Van Laecke K, Smagghe G, Degheele D (1995) Detoxifying enzymes in greenhouse and laboratory strain of beet armyworm (Lepidoptera: Noctuidae). J Econ Entomol 88:777–781. https://doi.org/10.1093/jee/88.4.777
doi: 10.1093/jee/88.4.777
Van Steenwyk RA, Toscano NC (2015) Relationship between lepidopterous larval density and damage in celery and celery plant growth analysis1. J Econ Entomol 20:709–726. https://doi.org/10.1093/jee/74.3.287
doi: 10.1093/jee/74.3.287
Varshney R, Poornesha B, Raghavendra A et al (2021) Biocontrol-based management of fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae) on Indian maize. J Plant Dis Prot 128:87–95. https://doi.org/10.1007/s41348-020-00357-3
doi: 10.1007/s41348-020-00357-3
Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771
doi: 10.1101/gad.1410506
Vaughan A, Hawkes N, Hemingway J (1997) Co-amplification explains linkage disequilibrium of two mosquito esterase genes in insecticide-resistant Culex quinquefasciatus. Biochem J 325:359–365. https://doi.org/10.1042/bj3250359
doi: 10.1042/bj3250359
Vontas JG, Small GJ, Hemingway J (2001) Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 357:65–72. https://doi.org/10.1042/bj3570065
doi: 10.1042/bj3570065
Vontas JG, Small GJ, Nikou DC et al (2002) Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper. Nilaparvata Lugens Biochem J 362:329–337. https://doi.org/10.1042/0264-6021:3620329
Wang KY, Jiang XY, Yi MQCB, XX, (2002) Insecticide resistance of Spodoptera exigua. Acta Phytophylacica Sin 29:229–234
Wang LL, Huang Y, Lu XP et al (2015) Overexpression of two α-esterase genes mediates metabolic resistance to malathion in the oriental fruit fly, Bactrocera dorsalis (Hendel). Insect Mol Biol 24:467–479. https://doi.org/10.1111/imb.12173
doi: 10.1111/imb.12173
Wang P, Yang F, Wang Y et al (2021) Monitoring the resistance of the beet armyworm (Lepidoptera: Noctuidae) to four insecticides in Southern China from 2014 to 2018. J Econ Entomol 144:332–338. https://doi.org/10.1093/jee/toaa290
doi: 10.1093/jee/toaa290
Wang RL, Liu SW, Baerson SR et al (2018a) Identification and functional analysis of a novel cytochrome P450 gene CYP9A105 associated with pyrethroid detoxification in spodoptera exigua hübner. Int J Mol Sci 19:737. https://doi.org/10.3390/ijms19030737
doi: 10.3390/ijms19030737
Wang X, Chen Y, Gong C et al (2018b) Molecular identification of four novel cytochrome P450 genes related to the development of resistance of Spodoptera exigua (Lepidoptera: Noctuidae) to chlorantraniliprole. Pest Manag Sci 74:1938–1952
doi: 10.1002/ps.4898
Wang X, Huang Q, Hao Q et al (2018c) Insecticide resistance and enhanced cytochrome P450 monooxygenase activity in field populations of Spodoptera litura from Sichuan, China. Crop Prot 106:110–116. https://doi.org/10.1016/j.cropro.2017.12.020
doi: 10.1016/j.cropro.2017.12.020
Wang X, Xiang X, Yu H et al (2018d) Monitoring and biochemical characterization of beta-cypermethrin resistance in Spodoptera exigua (Lepidoptera: Noctuidae) in Sichuan Province. China Pestic Biochem Physiol 146:71–79. https://doi.org/10.1016/j.pestbp.2018.02.008
doi: 10.1016/j.pestbp.2018.02.008
Whyard S, Downe AER, Walker VK (1995) Characterization of a novel esterase conferring insecticide resistance in the mosquito Culex tarsalis. Arch Insect Biochem Physiol 29:329–342. https://doi.org/10.1002/arch.940290402
doi: 10.1002/arch.940290402
Whyard S, Erdelyan CNG, Partridge AL et al (2015) Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. Parasit Vectors 12(8):96. https://doi.org/10.1186/s13071-015-0716-6
doi: 10.1186/s13071-015-0716-6
Wolfenbarger DA, Wolfenbarger DJ (2010) Beet armyworm (Lepidoptera: Noctuidae): selection for resistance to insecticides by a five strain cross. Trop Agric 87:175–181
Xu C, Zhang Z, Cui K, et al (2017) Effects of sublethal concentrations of cyantraniliprole on the development, fecundity and nutritional physiology of the black cutworm (Lepidoptera: Noctuidae). PLoS One 11:11(6): e0156555. doi: https://doi.org/10.1371/journal.pone.0156555
Yates SR, Wang D, Papiernik SK, Gan J (2002) Predicting pesticide volatilization from soils. Environmetrics 13:569–578. https://doi.org/10.1002/env.542
doi: 10.1002/env.542
Yayun Zuo, Hui Wang, Yanjun Xu, Jianlei Huang, Shuwen Wu, Yidong Wu YY (2017) CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides. Insect Biochem Mol Biol 89:79–85
Yencho GC, Cohen MB, Byrne PF (2000) Applications of tagging and mapping insect resistance loci in plants. Annu Rev Entomol 45:393–422. https://doi.org/10.1146/annurev.ento.45.1.393
doi: 10.1146/annurev.ento.45.1.393
Yousafi Q, Sarfaraz A, Saad Khan M et al (2021) In silico annotation of unreviewed acetylcholinesterase (AChE) in some lepidopteran insect pest species reveals the causes of insecticide resistance. Saudi J Biol Sci 28:2197–2209. https://doi.org/10.1016/j.sjbs.2021.01.007
doi: 10.1016/j.sjbs.2021.01.007
Zeng R Sen, Wen Z, Niu G, et al (2007) Allelochemical induction of cytochrome P450 monooxygenases and amelioration of xenobiotic toxicity in Helicoverpa zea. J Chem Ecol. 33: 449-61 https://doi.org/10.1007/s10886-006-9238-1
Zhang B, Liu H, Helen HS, Wang JJ (2011) Effect of host plants on development, fecundity and enzyme activity of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Agric Sci China 10:1232–1240. https://doi.org/10.1016/S1671-2927(11)60114-4
doi: 10.1016/S1671-2927(11)60114-4
Zhang J, Khan SA, Heckel DG, Bock R (2017) Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnol 35:871–882
doi: 10.1016/j.tibtech.2017.04.009
Zhang J, Pelletier Y, Goyer C (2008) Identification of potential detoxification enzyme genes in Leptinotarsa decemlineata (Say) and study of their expression in insects reared on different plants. J Plant Sci 107:360–368. https://doi.org/10.4141/CJPS07001
doi: 10.4141/CJPS07001
Zheng XL, Cong XP, Wang XP, Lei CL (2011) A review of geographic distribution, overwintering and migration in spodoptera exigua H??bner (Lepidoptera: Noctuidae). J Entomol Res Soc 13:39–48
Zhu F, Moural TW, Nelson DR et al (2016) A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple cytochrome P450s. Sci Rep. https://doi.org/10.1038/srep20421
doi: 10.1038/srep20421
Zhu KY, Palli SR (2020) Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 293–311
Zuo YY, Ma HH, Lu WJ et al (2020) Identification of the ryanodine receptor mutation I4743M and its contribution to diamide insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae). Insect Sci 24:791–800. https://doi.org/10.1111/1744-7917.12695
doi: 10.1111/1744-7917.12695

Auteurs

Muhammad Hafeez (M)

State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.

Farman Ullah (F)

Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.

Muhammad Musa Khan (MM)

Key Laboratory of Bio-Pesticide Innovation and Application, Guangdong Province, South China Agricultural University, Guangzhou, 510642, China.

Xiaowei Li (X)

State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.

Zhijun Zhang (Z)

State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.

Sakhawat Shah (S)

Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Hubei, People's Republic of China.

Muhammad Imran (M)

Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.

Mohammed A Assiri (MA)

Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.

G Mandela Fernández-Grandon (GM)

Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK.

Nicolas Desneux (N)

UMR ISA, Université Côte d'Azur, INRAE, CNRS, 06000, Nice, France.

Muzammal Rehman (M)

School of Agriculture, Yunnan University, Kunming, 650504, Yunnan, China.

Shah Fahad (S)

Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China. shah_fahad80@yahoo.com.
Department of Agronomy, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan. shah_fahad80@yahoo.com.

Yaobin Lu (Y)

State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China. luybcn@163.com.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH