Biallelic ZNFX1 variants are associated with a spectrum of immuno-hematological abnormalities.
Alleles
Antigens, Neoplasm
/ genetics
Chromosome Mapping
Computational Biology
/ methods
DNA Mutational Analysis
Databases, Genetic
Facies
Genetic Association Studies
Genetic Predisposition to Disease
Hematologic Diseases
/ diagnosis
Homozygote
Humans
Mutation
Pedigree
Phenotype
Primary Immunodeficiency Diseases
/ diagnosis
ZNFX1
hemophagocytic lymphohistiocytosis
hepatosplenomegaly
immunodeficiency
monocytosis
Journal
Clinical genetics
ISSN: 1399-0004
Titre abrégé: Clin Genet
Pays: Denmark
ID NLM: 0253664
Informations de publication
Date de publication:
02 2022
02 2022
Historique:
revised:
08
09
2021
received:
28
06
2021
accepted:
23
10
2021
pubmed:
29
10
2021
medline:
29
3
2022
entrez:
28
10
2021
Statut:
ppublish
Résumé
Biallelic changes in the ZNFX1 gene have been recently reported to cause severe familial immunodeficiency. Through a search of our bio/databank with information from genetic testing of >55 000 individuals, we identified nine additional patients from seven families with six novel homozygous ZNFX1 variants. Consistent with the previously described phenotype, our patients suffered from monocytosis, thrombocytopenia, hepatosplenomegaly, recurrent infections, and lymphadenopathy. The two most severely affected probands also had renal involvement and clinical presentations compatible with hemophagocytic lymphohistiocytosis. The disease was less lethal among our patients than previously reported. We identified two missense changes, two variants predicted to result in complete protein loss through nonsense-mediated decay, and two frameshift changes that likely introduce a truncation. Our findings (i) independently confirm the role of ZNFX1 in primary genetic immunodeficiency, (ii) expand the genetic and clinical spectrum of ZNFX1-related disease, and (iii) illustrate the utility of large, well-curated, and continually updated genotype-phenotype databases in resolving molecular diagnoses of patients with initially negative genetic testing findings.
Substances chimiques
Antigens, Neoplasm
0
ZNFX1 protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
247-254Informations de copyright
© 2021 John Wiley & Sons A/S . Published by John Wiley & Sons Ltd.
Références
Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014;32:513-545. doi:10.1146/annurev-immunol-032713-120231
Alphonse N, Dickenson RE, Odendall C. Interferons: tug of war between bacteria and their host. Front Cell Infect Microbiol. 2021;11:10. doi:10.3389/fcimb.2021.624094
Le Voyer T, Neehus A-L, Yang R, et al. Inherited deficiency of stress granule ZNFX1 in patients with monocytosis and mycobacterial disease. Proc Natl Acad Sci. 2021;118(15):e2102804118. doi:10.1073/pnas.2102804118
Vavassori S, Chou J, Faletti LE, et al. Multisystem inflammation and susceptibility to viral infections in human ZNFX1 deficiency. J Allergy Clin Immunol. 2021;148:381-393. doi:10.1016/j.jaci.2021.03.045
Trujillano D, Oprea G-E, Schmitz Y, Bertoli-Avella AM, Abou Jamra R, Rolfs A. A comprehensive global genotype-phenotype database for rare diseases. Mol Genet Genomic Med. 2017;5(1):66-75. doi:10.1002/mgg3.262
Trujillano D, Bertoli-Avella AM, Kumar Kandaswamy K, et al. Clinical exome sequencing: results from 2819 samples reflecting 1000 families. Eur J Hum Genet. 2017;25(2):176-182. doi:10.1038/ejhg.2016.146
Bauer P, Kandaswamy KK, Weiss MER, et al. Development of an evidence-based algorithm that optimizes sensitivity and specificity in ES-based diagnostics of a clinically heterogeneous patient population. Genet Med. 2019;21(1):53-61. doi:10.1038/s41436-018-0016-6
Fairman-Williams ME, Guenther UP, Jankowsky E. SF1 and SF2 helicases: family matters. Curr Opin Struct Biol. 2010;20(3):313-324. doi:10.1016/j.sbi.2010.03.011
Wang Y, Yuan S, Jia X, et al. Mitochondria-localised ZNFX1 functions as a dsRNA sensor to initiate antiviral responses through MAVS. Nat Cell Biol. 2019;21(11):1346-1356. doi:10.1038/s41556-019-0416-0
Lindeboom RGH, Supek F, Lehner B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat Genet. 2016;48(10):1112-1118. doi:10.1038/ng.3664
Neu-Yilik G, Amthor B, Gehring NH, et al. Mechanism of escape from nonsense-mediated mRNA decay of human β-globin transcripts with nonsense mutations in the first exon. RNA. 2011;17(5):843-854. doi:10.1261/rna.2401811