Concentration-Polarization Electroosmosis near Insulating Constrictions within Microfluidic Channels.
Journal
Analytical chemistry
ISSN: 1520-6882
Titre abrégé: Anal Chem
Pays: United States
ID NLM: 0370536
Informations de publication
Date de publication:
09 11 2021
09 11 2021
Historique:
pubmed:
28
10
2021
medline:
16
11
2021
entrez:
27
10
2021
Statut:
ppublish
Résumé
Electric fields are commonly used to trap and separate micro- and nanoparticles near channel constrictions in microfluidic devices. The trapping mechanism is attributed to the electrical forces arising from the nonhomogeneous electric field caused by the constrictions, and the phenomenon is known as insulator-based-dielectrophoresis (iDEP). In this paper, we describe stationary electroosmotic flows of electrolytes around insulating constrictions induced by low frequency AC electric fields (below 10 kHz). Experimental characterization of the flows is described for two different channel heights (50 and 10 μm), together with numerical simulations based on an electrokinetic model that considers the modification of the local ionic concentration due to surface conductance on charged insulating walls. We term this phenomenon concentration-polarization electroosmosis (CPEO). The observed flow characteristics are in qualitative agreement with the predictions of this model. However, for shallow channels (10 μm), trapping of the particles on both sides of the constrictions is also observed. This particle and fluid behavior could play a major role in iDEP and could be easily misinterpreted as a dielectrophoretic force.
Identifiants
pubmed: 34704741
doi: 10.1021/acs.analchem.1c02849
pmc: PMC8581963
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
14667-14674Références
Electrophoresis. 2019 Feb;40(3):358-375
pubmed: 30112789
Analyst. 2014 Jan 7;139(1):66-73
pubmed: 24225592
Anal Chem. 2003 Sep 15;75(18):4724-31
pubmed: 14674447
Electrophoresis. 2004 Jun;25(10-11):1695-704
pubmed: 15188259
J Colloid Interface Sci. 2005 May 1;285(1):419-28
pubmed: 15797441
J Chromatogr A. 2020 Jul 19;1623:461151
pubmed: 32505271
Biophys J. 2002 Oct;83(4):2170-9
pubmed: 12324434
Phys Rev Lett. 2004 Feb 13;92(6):066101
pubmed: 14995255
Electrophoresis. 2017 Oct;38(20):2576-2586
pubmed: 28763135
Electrophoresis. 2019 Sep;40(18-19):2541-2552
pubmed: 31219183
Lab Chip. 2009 Sep 21;9(18):2698-706
pubmed: 19704986
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021503
pubmed: 23005765
J Am Chem Soc. 2012 May 30;134(21):8742-5
pubmed: 22594700
Micromachines (Basel). 2020 Nov 18;11(11):
pubmed: 33218201
Electrophoresis. 2011 Sep;32(17):2274-81
pubmed: 21792988
Lab Chip. 2019 Apr 9;19(8):1386-1396
pubmed: 30912779
Anal Chem. 2007 Jun 15;79(12):4552-7
pubmed: 17487977
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 2):046312
pubmed: 19905441
Anal Bioanal Chem. 2011 Oct;401(7):2113-22
pubmed: 21847528
J Chromatogr A. 2008 Oct 3;1206(1):45-51
pubmed: 18571183
Biomicrofluidics. 2019 Oct 23;13(5):054110
pubmed: 31673301
Electrophoresis. 2018 Mar;39(5-6):887-896
pubmed: 29068080