Heme-dependent recognition of 5-aminolevulinate synthase by the human mitochondrial molecular chaperone ClpX.
5-Aminolevulinate Synthetase
/ chemistry
Adenosine Diphosphate
/ metabolism
Adenosine Triphosphate
/ metabolism
Amino Acid Motifs
Amino Acid Sequence
Endopeptidase Clp
/ metabolism
Heme
/ metabolism
Hemin
/ metabolism
Humans
Intrinsically Disordered Proteins
/ metabolism
Mitochondria
/ metabolism
Models, Biological
Molecular Chaperones
/ metabolism
Protein Binding
ALAS1
ClpX
ClpXP proteolytic machinery
heme-regulated proteins
intrinsically disordered protein regions
molecular chaperone
Journal
FEBS letters
ISSN: 1873-3468
Titre abrégé: FEBS Lett
Pays: England
ID NLM: 0155157
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
revised:
21
09
2021
received:
08
07
2021
accepted:
15
10
2021
pubmed:
28
10
2021
medline:
12
1
2022
entrez:
27
10
2021
Statut:
ppublish
Résumé
The caseinolytic mitochondrial matrix peptidase chaperone subunit (ClpX) plays an important role in the heme-dependent regulation of 5-aminolevulinate synthase (ALAS1), a key enzyme in heme biosynthesis. However, the mechanisms underlying the role of ClpX in this process remain unclear. In this in vitro study, we confirmed the direct binding between ALAS1 and ClpX in a heme-dependent manner. The substitution of C
Identifiants
pubmed: 34704252
doi: 10.1002/1873-3468.14214
doi:
Substances chimiques
Intrinsically Disordered Proteins
0
Molecular Chaperones
0
Heme
42VZT0U6YR
Adenosine Diphosphate
61D2G4IYVH
Hemin
743LRP9S7N
Adenosine Triphosphate
8L70Q75FXE
5-Aminolevulinate Synthetase
EC 2.3.1.37
Endopeptidase Clp
EC 3.4.21.92
CLPX protein, human
EC 3.6.1.3
Banques de données
RefSeq
['AAH11798.1', 'AAC39838.1', 'AAA34668.1', 'BC136487.1', 'BC011798.2']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3019-3029Informations de copyright
© 2021 Federation of European Biochemical Societies.
Références
Bishop DF, Henderson AS and Astrin KH (1990) Human delta-aminolevulinate synthase: assignment of the housekeeping gene to 3p21 and the erythroid-specific gene to the X chromosome. Genomics 7, 207-214.
Cotter PD, Willard HF, Gorski JL and Bishop DF (1991) Assignment of human erythroid delta-aminolevulinate synthase (ALAS2) to a distal subregion of band Xp11.21 by PCR analysis of somatic cell hybrids containing X; autosome translocations. Genomics 13, 211-212.
Dwyer BE, Smith MA, Richardson SL, Perry G and Zhu X (2009) Down-regulation of aminolevulinate synthase, the rate-limiting enzyme for heme biosynthesis in Alzheimer’s disease. Neurosci Lett 460, 180-184.
Furuyama K and Sassa S (2002) Multiple mechanisms for hereditary sideroblastic anemia. Cell Mol Biol 48, 5-10.
Schmitt C, Lenglet H, Yu A, Delaby C, Benecke A, Lefebvre T, Letteron P, Paradis V, Wahlin S, Sandberg S et al. (2018) Recurrent attacks of acute hepatic porphyria: major role of the chronic inflammatory response in the liver. J Intern Med 284, 78-91.
Kubota Y, Nomura K, Katoh Y, Yamashita R, Kaneko K and Furuyama K (2016) Novel mechanisms for heme-dependent degradation of ALAS1 protein as a component of negative feedback regulation of heme biosynthesis. J Biol Chem 291, 20516-20529.
Sauer RT (2011) AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80, 587-612.
Olivares AO, Baker TA and Sauer RT (2018) Mechanical protein unfolding and degradation. Ann Rev Biochem 80, 413-429.
Kang SG, Ortega J, Singh SK, Wang N, Huang N-N, Steven AC and Maurizi MR (2002) Functional proteolytic complexes of the human mitochondrial ATP-dependent protease, hClpXP. J Biol Chem 277, 21095-21102.
Kang SG, Dimitrova MN, Ortega J, Ginsburg A and Maurizi MR (2005) Human mitochondrial ClpP is a stable heptamer that assembles into a tetradecamer in the presence of ClpX. J Biol Chem 280, 35424-35432.
Brodie JE, Zhan H, Saiyed T, Truscott KN and Dougan DA (2018) Perrault syndrome type 3 caused by diverse molecular defects in CLPP. Sci Rep 8, 12862-12873.
David TJ and Domenico C (2015) DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31, 857-863.
Mészáros B, Erdos G and Dosztányi Z (2018) IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res 46 (W1), W329-W337.
Obradovic Z, Peng K, Vucetic S, Radivojac P and Dunker AK (2005) Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 61 (Suppl 7), 176-182.
Obradovic Z, Peng K, Vucetic S, Radivojac P, Brown CJ and Dunker AK (2003) Predicting intrinsic disorder from amino acid sequence. Proteins 53 (Suppl 6), 566-572.
Girvan HM and Munro AW (2013) Heme sensor proteins. J Biol Chem 288, 13194-13203.
Uversky NV (2015) The multifaceted roles of intrinsic disorder in protein complexes. FEBS Lett 589, 2498-2506.
Uversky NV (2011) Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chem Soc Rev 40, 1623-1634.
Uversky NV (2013) Intrinsic disorder-based protein interactions and their modulators. Curr Pharm Des 19, 4191-4213.
Uversky NV, Oldfield CJ and Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18, 343-384.
Patil A and Nakamura H (2006) Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett 580, 2041-2045.
Dosztanyi Z, Chen J, Dunker AK, Simon I and Tompa P (2006) Disorder and sequence repeats in hub proteins and their implications for network evolution. J Proteome Res 5, 2985-2995.
Girvan HM, Bradley JM, Cheesman MR, Kincaid JR, Liu Y, Czarnecki K, Fisher K, Leys D, Rigby SEJ and Munro AW (2016) Analysis of heme iron coordination in DGCR8: the heme-binding component of the microprocessor complex. Biochemistry 55, 5073-5083.
Li T, Bonkovsky HL and Guo J-T (2011) Structural analysis of heme proteins: implications for design and prediction. BMC Struct Biol 11, 13.
Tompa P and Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18, 1169-1175.
Tompa P and Kovacs D (2010) Intrinsically disordered chaperones in plants and animals. Biochem Cell Biol 88, 167-174.
Bardwell JCA and Jakob U (2012) Conditional disorder in chaperone action. Trends Biochem Sci 37, 517-525.
Reichmann R, Xu Y, Cremers CM, Ilbert M, Mittelman R, Fitzgerald MC and Jakob U (2021) Order out of disorder: working cycle of an intrinsically unfolded chaperone. Cell 148, 947-957.
Zarrinpar A, Bhattacharyya RP and Lim W (2003) The structure and function of proline recognition domains. Sci Signal 179, RE8.
Astner I, Schulze JO, van den Heuvel J, Jahn D, Schubert W-D and Heinz DW (2005) Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. EMBO J 24, 3166-3177.
Brown BL, Kardon JR, Sauer RT and Baker TA (2018) Structure of the mitochondrial aminolevulinic acid synthase, a key heme biosynthetic enzyme. Structure 26, 580-589.
Bailey HJ, Bezarra GA, Marcero JR, Padhi S, Foster WR, Rembeza E, Roy A, Bishop DF, Desnick RJ, Bulusu G et al. (2020) Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release. Nat Commun 11, 2813.
Segawa K, Watanabe-Matsui M, Matsui T, Igarashi K and Murayama K (2019) Functional heme binding to the intrinsically disordered C-terminal region of Bach1, a transcriptional repressor. Tohoku J Exp Med 247, 153-159.
Watanabe-Matsui M, Muto M, Matsui T, Itoh-Nakadai A, Nakajima O, Murayama K, Yamamoto M, Ikeda-Saito M and Igarashi K (2011) Heme regulates B-cell differentiation, antibody class switch, and heme oxygenase-1 expression in B cells as a ligand of Bach2. Blood 117, 5438-5448.
Watanabe-Matsui M, Matsumoto T, Matsui T, Ikeda-Saito M, Muto A, Murayama K and Igarashi K (2015) Heme binds to an intrinsically disordered region of Bach2 and alters its conformation. Archives Biochem Biophys 565, 25-31.
Suenaga T, Watanabe-Matsui M, Uejima T, Shima H, Matsui T, Ikeda-Saito M, Shirouzu M, Igarashi K and Murayama K (2016) Charge-state distribution analysis of Bach2 intrinsically disordered heme binding region. J Biochem 160, 291-298.
Sadlon TJ, Dell'Oso T, Surinya KH and May BK (1999) Regulation of erythroid 5-aminolevulinate synthase expression during erythropoiesis. Int J Biochem Cell Biol 31, 1153-1167.
Kumar A, Wibbrock A, Goradia N, Bellstedt P, Ramachandran R, Imhof D and Ohlenschläger O (2018) Heme interaction of the intrinsically disordered N-terminal peptide segment of human cystathionine-β-synthase. Sci Rep 8, 2474.
Ponka P (1997) Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood 89, 1-25.
Chiabrando D, Mercurio S and Tolosano E (2014) Heme and erythropoiesis: more than a structural role. Haematologica 98, 973-983.
Kardon JR, Yien YY, Huston NC, Branco DS, Hildick-Smith GJ, Rhee KY, Paw BH and Baker TA (2015) Mitochondrial ClpX activates a key enzyme for heme biosynthesis and erythropoiesis. Cell 161, 858-867.
Kardon JR, Moroco JA, Engen JR and Baker TA (2020) Mitochondrial ClpX activates an essential biosynthetic enzyme through partial unfolding. Elife 9, e54387.
Baytshtoka V, Baker TA and Sauera RT (2015) Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases. Proc Natl Acad Sci USA 112, 5377-5382.
Chowdhury T, Chien P, Ebrahim S, Sauer RT and Baker TA (2010) Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacteria species. Protein Sci 19, 242-254.
Thibault G, Yudin J, Tsitrin V, Sprangers R, Zhao R and Houry WA (2006) Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX. Proc Natl Acad Sci USA 103, 17724-17729.
Amor AJ, Schmitz KR, Baker TA and Sauer RT (2019) Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation. Protein Sci 28, 756-765.