Enviromic Assembly Increases Accuracy and Reduces Costs of the Genomic Prediction for Yield Plasticity in Maize.
adaptability
climate-smart
genomic selection
genotype × environment
selective phenotyping
Journal
Frontiers in plant science
ISSN: 1664-462X
Titre abrégé: Front Plant Sci
Pays: Switzerland
ID NLM: 101568200
Informations de publication
Date de publication:
2021
2021
Historique:
received:
31
05
2021
accepted:
03
09
2021
entrez:
25
10
2021
pubmed:
26
10
2021
medline:
26
10
2021
Statut:
epublish
Résumé
Quantitative genetics states that phenotypic variation is a consequence of the interaction between genetic and environmental factors. Predictive breeding is based on this statement, and because of this, ways of modeling genetic effects are still evolving. At the same time, the same refinement must be used for processing environmental information. Here, we present an "enviromic assembly approach," which includes using ecophysiology knowledge in shaping environmental relatedness into whole-genome predictions (GP) for plant breeding (referred to as enviromic-aided genomic prediction, E-GP). We propose that the quality of an environment is defined by the core of environmental typologies and their frequencies, which describe different zones of plant adaptation. From this, we derived markers of environmental similarity cost-effectively. Combined with the traditional additive and non-additive effects, this approach may better represent the putative phenotypic variation observed across diverse growing conditions (i.e., phenotypic plasticity). Then, we designed optimized multi-environment trials coupling genetic algorithms, enviromic assembly, and genomic kinships capable of providing
Identifiants
pubmed: 34691099
doi: 10.3389/fpls.2021.717552
pmc: PMC8529011
doi:
Types de publication
Journal Article
Langues
eng
Pagination
717552Informations de copyright
Copyright © 2021 Costa-Neto, Crossa and Fritsche-Neto.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer KD declared a shared affiliation, with no collaboration, with one of the authors GC-N to the handling editor at the time of the review.
Références
PLoS One. 2019 Jun 7;14(6):e0217571
pubmed: 31173600
Theor Appl Genet. 2014 Mar;127(3):595-607
pubmed: 24337101
Genome Res. 2020 May;30(5):673-683
pubmed: 32299830
Genetics. 2016 Feb;202(2):401-9
pubmed: 26584903
G3 (Bethesda). 2018 Dec 10;8(12):3813-3828
pubmed: 30291107
Bioinformatics. 2019 Oct 15;35(20):4045-4052
pubmed: 30977782
Sci Rep. 2019 Feb 5;9(1):1446
pubmed: 30723226
G3 (Bethesda). 2020 May 4;10(5):1727-1743
pubmed: 32179621
Plant Genome. 2021 Aug 9;:e20127
pubmed: 34370387
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6679-6684
pubmed: 29891664
Nat Commun. 2017 Nov 7;8(1):1348
pubmed: 29116144
Theor Appl Genet. 2017 Sep;130(9):1927-1939
pubmed: 28647896
Front Plant Sci. 2021 Sep 10;12:735143
pubmed: 34567047
Theor Appl Genet. 2017 Nov;130(11):2231-2247
pubmed: 28795202
G3 (Bethesda). 2021 Apr 15;11(4):
pubmed: 33835165
Front Genet. 2019 Dec 09;10:1168
pubmed: 31921277
Heredity (Edinb). 2020 Aug;125(1-2):60-72
pubmed: 32472060
Glob Chang Biol. 2018 May;24(5):2035-2050
pubmed: 29369459
BMC Genomics. 2014 Sep 29;15:823
pubmed: 25266061
Genome Biol. 2020 Jul 6;21(1):163
pubmed: 32631406
Theor Appl Genet. 2009 Dec;120(1):151-61
pubmed: 19841887
Theor Appl Genet. 2012 Mar;124(4):769-76
pubmed: 22075809
Front Plant Sci. 2021 Apr 16;12:651480
pubmed: 33936136
Genetics. 2013 Dec;195(4):1223-30
pubmed: 24121775
Theor Appl Genet. 2014 Feb;127(2):463-80
pubmed: 24264761
G3 (Bethesda). 2021 Feb 9;11(2):
pubmed: 33585867
PLoS One. 2020 Jun 19;15(6):e0233951
pubmed: 32559220
Theor Appl Genet. 2016 Apr;129(4):653-673
pubmed: 26932121
G3 (Bethesda). 2017 Jun 7;7(6):1995-2014
pubmed: 28455415
Heredity (Edinb). 2018 Jul;121(1):24-37
pubmed: 29472694
G3 (Bethesda). 2019 May 7;9(5):1519-1531
pubmed: 30877079
Trends Plant Sci. 2017 Nov;22(11):961-975
pubmed: 28965742
J Exp Bot. 2011 Mar;62(6):1743-55
pubmed: 21421705
Theor Appl Genet. 2017 Aug;130(8):1735-1752
pubmed: 28540573
Plant Methods. 2019 Feb 7;15:14
pubmed: 30774704
G3 (Bethesda). 2018 Aug 30;8(9):3039-3047
pubmed: 30049744
G3 (Bethesda). 2019 Sep 4;9(9):2913-2924
pubmed: 31289023
Genetics. 2001 Apr;157(4):1819-29
pubmed: 11290733
Theor Appl Genet. 2021 Jan;134(1):95-112
pubmed: 32964262
Plant Genome. 2020 Nov;13(3):e20033
pubmed: 33217210
G3 (Bethesda). 2012 Nov;2(11):1427-36
pubmed: 23173094
Heredity (Edinb). 2015 Mar;114(3):291-9
pubmed: 25407079
Plant Mol Biol. 2017 Oct;95(3):279-302
pubmed: 28828699
Sci Rep. 2020 Aug 7;10(1):13382
pubmed: 32770083
Nat Genet. 2019 Jun;51(6):952-956
pubmed: 31110353
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6644-6649
pubmed: 29891651
Theor Appl Genet. 2006 Apr;112(6):1009-23
pubmed: 16538513
Front Plant Sci. 2020 Jun 19;11:827
pubmed: 32636859
Front Plant Sci. 2021 May 24;12:638520
pubmed: 34108977
J Exp Bot. 2015 Jun;66(12):3625-38
pubmed: 25873681
Front Plant Sci. 2020 Oct 21;11:583323
pubmed: 33193532
Nucleic Acids Res. 2020 Dec 2;48(21):12004-12015
pubmed: 33196821
Nat Commun. 2020 Sep 25;11(1):4876
pubmed: 32978378
Heredity (Edinb). 2021 Jan;126(1):92-106
pubmed: 32855544
New Phytol. 2019 May;222(3):1235-1241
pubmed: 30632169