Reduced expression of OXPHOS and DNA damage genes is linked to protection from microvascular complications in long-term type 1 diabetes: the PROLONG study.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
20 10 2021
Historique:
received: 09 04 2021
accepted: 22 09 2021
entrez: 21 10 2021
pubmed: 22 10 2021
medline: 28 1 2022
Statut: epublish

Résumé

Type 1 diabetes is a chronic autoimmune disease requiring insulin treatment for survival. Prolonged duration of type 1 diabetes is associated with increased risk of microvascular complications. Although chronic hyperglycemia and diabetes duration have been considered as the major risk factors for vascular complications, this is not universally seen among all patients. Persons with long-term type 1 diabetes who have remained largely free from vascular complications constitute an ideal group for investigation of natural defense mechanisms against prolonged exposure of diabetes. Transcriptomic signatures obtained from RNA sequencing of the peripheral blood cells were analyzed in non-progressors with more than 30 years of diabetes duration and compared to the patients who progressed to microvascular complications within a shorter duration of diabetes. Analyses revealed that non-progressors demonstrated a reduction in expression of the oxidative phosphorylation (OXPHOS) genes, which were positively correlated with the expression of DNA repair enzymes, namely genes involved in base excision repair (BER) machinery. Reduced expression of OXPHOS and BER genes was linked to decrease in expression of inflammation-related genes, higher glucose disposal rate and reduced measures of hepatic fatty liver. Results from the present study indicate that at transcriptomic level reduction in OXPHOS, DNA repair and inflammation-related genes is linked to better insulin sensitivity and protection against microvascular complications in persons with long-term type 1 diabetes.

Identifiants

pubmed: 34671071
doi: 10.1038/s41598-021-00183-z
pii: 10.1038/s41598-021-00183-z
pmc: PMC8528906
doi:

Substances chimiques

Blood Glucose 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

20735

Informations de copyright

© 2021. The Author(s).

Références

Maahs, D. M., West, N. A., Lawrence, J. M. & Mayer-Davis, E. J. Chapter 1: Epidemiology of type 1 diabetes. Endocrinol. Metab. Clin. N. Am. 39, 481–497 (2010).
doi: 10.1016/j.ecl.2010.05.011
Miller, R. G., Secrest, A. M., Sharma, R. K., Songer, T. J. & Orchard, T. J. Improvements in the life expectancy of type 1 diabetes. Diabetes 61, 2987–2992 (2012).
pubmed: 22851572 pmcid: 3478551 doi: 10.2337/db11-1625
Thomas, R. L., Halim, S., Gurudas, S., Sivaprasad, S. & Owens, D. R. IDF Diabetes Atlas: A review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018. Diabetes Res. Clin. Pract. 157, 73 (2019).
doi: 10.1016/j.diabres.2019.107840
Gilbertson, D. T. et al. Projecting the number of patients with end-stage renal disease in the United States to the year 2015. J. Am. Soc. Nephrol. 16, 3736–3741 (2005).
pubmed: 16267160 doi: 10.1681/ASN.2005010112
Piscitelli, P. et al. Predictors of chronic kidney disease in type 1 diabetes: a longitudinal study from the AMD annals initiative. Sci. Rep. 7, 3313 (2017).
pubmed: 28607417 pmcid: 5468280 doi: 10.1038/s41598-017-03551-w
Sulaiman, M. K. Diabetic nephropathy: Recent advances in pathophysiology and challenges in dietary management. Diabetol. Metab. Syndr. 11, 7 (2019).
pubmed: 30679960 pmcid: 6343294 doi: 10.1186/s13098-019-0403-4
Forbes, J. M. & Cooper, M. E. Mechanisms of diabetic complications. Physiol. Rev. 93, 137–188 (2013).
pubmed: 23303908 doi: 10.1152/physrev.00045.2011
Rask-Madsen, C. & King, G. L. Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell Metab. 17, 20–33 (2013).
pubmed: 23312281 pmcid: 3546345 doi: 10.1016/j.cmet.2012.11.012
Barrett, E. J. et al. Diabetic microvascular disease: An endocrine society scientific statement. J. Clin. Endocrinol. Metab. 102, 4343–4410 (2017).
pubmed: 29126250 pmcid: 5718697 doi: 10.1210/jc.2017-01922
Jain, R. et al. Liver nucleotide biosynthesis is linked to protection from vascular complications in individuals with long-term type 1 diabetes. Sci. Rep. 10, 11561 (2020).
pubmed: 32665614 pmcid: 7360755 doi: 10.1038/s41598-020-68130-y
Kowluru, R. A. Mitochondrial stability in diabetic retinopathy: Lessons learned from epigenetics. Diabetes 68, 241–247 (2019).
pubmed: 30665952 pmcid: 6341304 doi: 10.2337/dbi18-0016
Sivitz, W. I. & Yorek, M. A. Mitochondrial dysfunction in diabetes: From molecular mechanisms to functional significance and therapeutic opportunities. Antioxid. Redox Signal. 12, 537–577 (2010).
pubmed: 19650713 pmcid: 2824521 doi: 10.1089/ars.2009.2531
Chen, J., Stimpson, S. E., Fernandez-Bueno, G. A. & Mathews, C. E. Mitochondrial reactive oxygen species and type 1 diabetes. Antioxid. Redox Signal. 29, 1361–1372 (2018).
pubmed: 29295631 pmcid: 6166689 doi: 10.1089/ars.2017.7346
Kim, J., Lee, J. & Iyer, V. R. Global identification of myc target genes reveals its direct role in mitochondrial biogenesis and its e-box usage in vivo. PLoS ONE 3, e11 (2008).
doi: 10.1371/journal.pone.0001798
Chiefari, E. et al. Functional variants of the HMGA1 gene and type 2 diabetes mellitus. JAMA 305, 903–912 (2011).
pubmed: 21364139 doi: 10.1001/jama.2011.207
Giwa, A. M. et al. Current understandings of the pathogenesis of type 1 diabetes: Genetics to environment. World J. Diabetes 11, 13–25 (2020).
pubmed: 31938470 pmcid: 6927819 doi: 10.4239/wjd.v11.i1.13
Kitada, M., Zhang, Z., Mima, A. & King, G. L. Molecular mechanisms of diabetic vascular complications. J. Diabetes Investig. 1, 77–89 (2010).
pubmed: 24843412 pmcid: 4008020 doi: 10.1111/j.2040-1124.2010.00018.x
Zorov, D. B., Juhaszova, M. & Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909–950 (2014).
pubmed: 24987008 pmcid: 4101632 doi: 10.1152/physrev.00026.2013
Fan, P. et al. Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy. DNA Cell Biol. 38, 10–22 (2018).
pubmed: 30556744 doi: 10.1089/dna.2018.4348
Nishikawa, T. & Araki, E. Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid. Redox Signal. 9, 343–353 (2007).
pubmed: 17184177 doi: 10.1089/ars.2006.1458
Nissanka, N. & Moraes, C. T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 592, 728–742 (2018).
pubmed: 29281123 pmcid: 6942696 doi: 10.1002/1873-3468.12956
Liang, F.-Q. & Godley, B. F. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: A possible mechanism for RPE aging and age-related macular degeneration. Exp. Eye Res. 76, 397–403 (2003).
pubmed: 12634104 doi: 10.1016/S0014-4835(03)00023-X
Kaarniranta, K., Pawlowska, E., Szczepanska, J., Jablkowska, A. & Blasiak, J. Role of mitochondrial DNA damage in ROS-mediated pathogenesis of age-related macular degeneration (AMD). Int. J. Mol. Sci. 20, 1 (2019).
doi: 10.3390/ijms20102374
Jha, J. C., Banal, C., Chow, B. S. M., Cooper, M. E. & Jandeleit-Dahm, K. Diabetes and kidney disease: Role of oxidative stress. Antioxid. Redox Signal. 25, 657–684 (2016).
pubmed: 26906673 pmcid: 5069735 doi: 10.1089/ars.2016.6664
Bolignano, D. et al. Antioxidant agents for delaying diabetic kidney disease progression: A systematic review and meta-analysis. PLoS ONE 12, e0178699 (2017).
pubmed: 28570649 pmcid: 5453586 doi: 10.1371/journal.pone.0178699
Hekimi, S., Lapointe, J. & Wen, Y. Taking a “good” look at free radicals in the aging process. Trends Cell Biol. 21, 569–576 (2011).
pubmed: 21824781 pmcid: 4074523 doi: 10.1016/j.tcb.2011.06.008
Chatterjee, N. & Walker, G. C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58, 235–263 (2017).
pubmed: 28485537 pmcid: 5474181 doi: 10.1002/em.22087
Blasiak, J. et al. DNA damage and repair in type 2 diabetes mellitus. Mutat. Res. Mol. Mech. Mutagen. 554, 297–304 (2004).
doi: 10.1016/j.mrfmmm.2004.05.011
García-Lepe, U. O. & Bermúdez-Cruz, R. M. Mitochondrial genome maintenance: Damage and repair pathways. DNA Repair- Update https://doi.org/10.5772/intechopen.84627 (2019).
doi: 10.5772/intechopen.84627
Brace, L. E. et al. Increased oxidative phosphorylation in response to acute and chronic DNA damage. Npj Aging Mech. Dis. 2, 16022 (2016).
pubmed: 28721274 pmcid: 5514997 doi: 10.1038/npjamd.2016.22
Dalton, S. R. & Bellacosa, A. DNA demethylation by TDG. Epigenomics 4, 459–467 (2012).
pubmed: 22920184 doi: 10.2217/epi.12.36
Limpose, K. L. et al. Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer. Nucleic Acids Res. 46, 4515–4532 (2018).
pubmed: 29522130 pmcid: 5961185 doi: 10.1093/nar/gky162
Thomas, L. W. & Ashcroft, M. Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell. Mol. Life Sci. 76, 1759–1777 (2019).
pubmed: 30767037 pmcid: 6453877 doi: 10.1007/s00018-019-03039-y
Bindra, R. S., Crosby, M. E. & Glazer, P. M. Regulation of DNA repair in hypoxic cancer cells. Cancer Metastasis Rev. 26, 249–260 (2007).
pubmed: 17415527 doi: 10.1007/s10555-007-9061-3
Catrina, S.-B., Okamoto, K., Pereira, T., Brismar, K. & Poellinger, L. Hyperglycemia regulates hypoxia-inducible factor-1α protein stability and function. Diabetes 53, 3226–3232 (2004).
pubmed: 15561954 doi: 10.2337/diabetes.53.12.3226
Gu, H. F. et al. Impact of the hypoxia-inducible factor-1 α (HIF1A) Pro582Ser polymorphism on diabetes nephropathy. Diabetes Care 36, 415–421 (2013).
pubmed: 22991450 pmcid: 3554309 doi: 10.2337/dc12-1125
Ekberg, N. R. et al. Protective effect of the HIF-1A Pro582Ser polymorphism on severe diabetic retinopathy. J. Diabetes Res. 2019, e2936962. https://www.hindawi.com/journals/jdr/2019/2936962/ (2019).
Qi, W. et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat. Med. 23, 753–762 (2017).
pubmed: 28436957 pmcid: 5575773 doi: 10.1038/nm.4328
Gordin, D. et al. Characterization of glycolytic enzymes and pyruvate kinase M2 in type 1 and 2 diabetic nephropathy. Diabetes Care https://doi.org/10.2337/dc18-2585 (2019).
doi: 10.2337/dc18-2585 pubmed: 31076418 pmcid: 6609957
Gándara, L. & Wappner, P. Metabo-devo: A metabolic perspective of development. Mech. Dev. 154, 12–23 (2018).
pubmed: 29475040 doi: 10.1016/j.mod.2018.02.004
Zhao, R.-Z., Jiang, S., Zhang, L. & Yu, Z.-B. Mitochondrial electron transport chain, ROS generation and uncoupling (review). Int. J. Mol. Med. 44, 3–15 (2019).
pubmed: 31115493 pmcid: 6559295
Busiello, R. A., Savarese, S. & Lombardi, A. Mitochondrial uncoupling proteins and energy metabolism. Front. Physiol. 6, 13 (2015).
doi: 10.3389/fphys.2015.00036
Chan, C. B. & Harper, M.-E. Uncoupling proteins: Role in insulin resistance and insulin insufficiency. Curr. Diabetes Rev. 2, 271–283 (2006).
pubmed: 18220632 pmcid: 3060851 doi: 10.2174/157339906777950660
Brouwers, M. C. G. J. et al. Elevated lactate levels in patients with poorly regulated type 1 diabetes and glycogenic hepatopathy: A new feature of Mauriac syndrome. Diabetes Care 38, e11–e12 (2015).
pubmed: 25614691 doi: 10.2337/dc14-2205
Dunwoodie, S. L. The role of hypoxia in development of the mammalian embryo. Dev. Cell 17, 755–773 (2009).
pubmed: 20059947 doi: 10.1016/j.devcel.2009.11.008
Zhou, W. et al. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 31, 2103–2116 (2012).
pubmed: 22446391 pmcid: 3343469 doi: 10.1038/emboj.2012.71
Pateras, I. S. et al. The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where. Pharmacol. Ther. 154, 36–56 (2015).
pubmed: 26145166 doi: 10.1016/j.pharmthera.2015.06.011
Paik, J. & Blair, H. A. Dapagliflozin: A review in type 1 diabetes. Drugs 79, 1877–1884 (2019).
pubmed: 31664708 pmcid: 6881422 doi: 10.1007/s40265-019-01213-x
Persson, F. et al. Efficacy and safety of dapagliflozin by baseline glycemic status: A prespecified analysis from the DAPA-CKD trial. Diabetes Care https://doi.org/10.2337/dc21-0300 (2021).
doi: 10.2337/dc21-0300 pubmed: 34183431 pmcid: 8385469
Ludvigsson, J. F. et al. External review and validation of the Swedish national inpatient register. BMC Public Health 11, 450 (2011).
pubmed: 21658213 pmcid: 3142234 doi: 10.1186/1471-2458-11-450
Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).
pubmed: 25822800 pmcid: 4739640 doi: 10.1038/nmeth.3337
Finotello, F. et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. bioRxiv 223180 (2018). https://doi.org/10.1101/223180 .
Gong, T. & Szustakowski, J. D. DeconRNASeq: A statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data. Bioinformatics 29, 1083–1085 (2013).
pubmed: 23428642 doi: 10.1093/bioinformatics/btt090
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).
pubmed: 27043002 doi: 10.1038/nbt.3519
Yates, A. et al. Ensembl 2016. Nucleic Acids Res. 44, D710–D716 (2016).
pubmed: 26687719 doi: 10.1093/nar/gkv1157
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing).
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. F1000Research 4, 1521 (2015).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Ashburner, M. et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
pubmed: 10802651 pmcid: 3037419 doi: 10.1038/75556
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
pubmed: 10592173 pmcid: 102409 doi: 10.1093/nar/28.1.27
Wu, D. & Smyth, G. K. Camera: A competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 40, e133–e133 (2012).
pubmed: 22638577 pmcid: 3458527 doi: 10.1093/nar/gks461

Auteurs

Türküler Özgümüş (T)

Department of Clinical Science, Center for Diabetes Research, University of Bergen, 5032, Bergen, Norway.

Oksana Sulaieva (O)

Medical Laboratory CSD, Vasylkivska Str. 45, Kyiv, Ukraine.

Leon Eyrich Jessen (LE)

Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.

Ruchi Jain (R)

Department of Clinical Sciences/Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, 205 02, Malmö, Sweden.

Henrik Falhammar (H)

Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.
Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.

Thomas Nyström (T)

Unit for Diabetes Research, Division of Internal Medicine, Department of Clinical Science and Education, Karolinska Institute, South Hospital, Stockholm, Sweden.

Sergiu-Bogdan Catrina (SB)

Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.
Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.
Center for Diabetes, Academic Specialist Centrum, Stockholm, Sweden.

Gun Jörneskog (G)

Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institute, Danderyd University Hospital, Stockholm, Sweden.

Leif Groop (L)

Department of Clinical Sciences/Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, 205 02, Malmö, Sweden.
Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland.

Mats Eliasson (M)

Sunderby Research Unit, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.

Björn Eliasson (B)

Department of Medicine, University of Gothenburg, Gothenburg, Sweden.

Kerstin Brismar (K)

Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.

Tomasz Stokowy (T)

Department of Clinical Science, University of Bergen, 5021, Bergen, Norway.

Peter M Nilsson (PM)

Department of Clinical Sciences/Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, 205 02, Malmö, Sweden.

Valeriya Lyssenko (V)

Department of Clinical Science, Center for Diabetes Research, University of Bergen, 5032, Bergen, Norway. Valeriya.Lyssenko@uib.no.
Department of Clinical Sciences/Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, 205 02, Malmö, Sweden. Valeriya.Lyssenko@uib.no.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH