Analysis of the 2016-2018 fluid-injection induced seismicity in the High Agri Valley (Southern Italy) from improved detections using template matching.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
19 10 2021
19 10 2021
Historique:
received:
19
05
2021
accepted:
01
10
2021
entrez:
20
10
2021
pubmed:
21
10
2021
medline:
21
10
2021
Statut:
epublish
Résumé
Improving the capability of seismic network to detect weak seismic events is one of the timeless challenges in seismology: the greater is the number of detected and locatable seismic events, the greater insights on the mechanisms responsible for seismic activation may be gained. Here we implement and apply a single-station template matching algorithm to detect events belonging to the fluid-injection induced seismicity cluster located in the High Agri Valley, Southern Italy, using the continuous seismic data stream of the closest station of the INSIEME network. To take into account the diversity of waveforms, albeit belonging to the same seismic cluster, eight different master templates were adopted. Afterwards, using all the stations of the network, we provide a seismic catalogue consisting of 196 located earthquakes, in the magnitude range - 1.2 ≤ Ml ≤ 1.2, with a completeness magnitude Mc = - 0.5 ± 0.1. This rich seismic catalogue allows us to describe the damage zone of a SW dipping fault, characterized by a variety of fractures critically stressed in the dip range between ~ 45° and ~ 75°. The time-evolution of seismicity clearly shows seismic swarm distribution characteristics with many events of similar magnitude, and the seismicity well correlates with injection operational parameters (i.e. injected volumes and injection pressures).
Identifiants
pubmed: 34667175
doi: 10.1038/s41598-021-00047-6
pii: 10.1038/s41598-021-00047-6
pmc: PMC8526624
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
20630Informations de copyright
© 2021. The Author(s).
Références
McGarr, A. F., Simpson, D. W. & Seeber, L. Case histories of induced and triggered seismicity. Int. Geophys. Ser. 81, 647–664 (2002).
doi: 10.1016/S0074-6142(02)80243-1
National Research Council (US). Induced Seismicity Potential in Energy Technologies. (The National Academies Press, 2013).
Grigoli, F. et al. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective. Rev. Geophys. 55, 310–340 (2017).
doi: 10.1002/2016RG000542
Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R. & Davies, R. J. Global review of human-induced earthquakes. Earth Sci. Rev. 178, 438–514 (2018).
doi: 10.1016/j.earscirev.2017.07.008
Keranen, K. M. & Weingarten, M. Induced Seismicity. Annu. Rev. Earth Planet. Sci. 46, 149–174 (2018).
doi: 10.1146/annurev-earth-082517-010054
Lee, K.-K. et al. Managing injection-induced seismic risks. Science 364, 730–732 (2019).
pubmed: 31123121
doi: 10.1126/science.aax1878
Zoback, M. D. Reservoir Geomechanics 1–452 (Cambridge University Press, 2007). https://doi.org/10.1017/CBO9780511586477
Shapiro, S. A. Fluid-Induced Seismicity (Cambridge University Press, 2015).
Mignan, A., Broccardo, M., Wiemer, S. & Giardini, D. Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections. Sci. Rep. 7, 1–10 (2017).
doi: 10.1038/s41598-017-13585-9
Ader, T. et al. Design and implementation of a traffic light system for deep geothermal well stimulation in Finland. J. Seismol. 24, 991–1014 (2020).
doi: 10.1007/s10950-019-09853-y
Duncan, P. M. & Eisner, L. Reservoir characterization using surface microseismic monitoring. Geophysics 75, 139–146 (2010).
doi: 10.1190/1.3467760
Maxwell, S. & Deere, J. An introduction to this special section: Microseismic. TLE 29, 277 (2010).
Stabile, T. A. et al. A comprehensive approach for evaluating network performance in surface and borehole seismic monitoring. Geophys. J. Int. 192, 793–806 (2013).
doi: 10.1093/gji/ggs049
Van der Baan, M., Eaton, D. W. & Dusseault, M. Microseismic Monitoring Developments in Hydraulic Fracture Stimulation 439–466 (IntechOpen, 2013). https://doi.org/10.5772/56444 .
Priolo, E. et al. Seismic monitoring of an underground natural gas storage facility: The Collalto Seismic Network. Seismol. Res. Lett. 86, 109–123 (2015).
doi: 10.1785/0220140087
Huang, W., Wang, R., Li, H. & Chen, Y. Unveiling the signals from extremely noisy microseismic data for high-resolution hydraulic fracturing monitoring. Sci. Rep. 7, 1–16 (2017).
De Landro, G., Picozzi, M., Russo, G., Adinolfi, G. M. & Zollo, A. Seismic networks layout optimization for a high-resolution monitoring of induced micro-seismicity. J. Seismol. 24, 953–966 (2020).
doi: 10.1007/s10950-019-09880-9
Stabile, T. A. et al. The INSIEME seismic network: A research infrastructure for studying induced seismicity in the High Agri Valley (southern Italy). Earth Syst. Sci. Data 12, 519–538 (2020).
doi: 10.5194/essd-12-519-2020
Spriggs, N., Bainbridge, G. & Greig, W. Comparison study between vault seismometers and posthole seismometers. European Geosciences Union 16 (2014).
Hofstetter, R., Malin, P. & Ben-Avraham, Z. Seismic observations of microearthquakes from the Masada deep borehole. Seismol. Res. Lett. 91, 2298–2309 (2020).
doi: 10.1785/0220190391
Caffagni, E., Eaton, D. W., Jones, J. P. & Van der Baan, M. Detection and analysis of microseismic events using a Matched Filtering Algorithm (MFA). Geophys. J. Int. ggw168 (2016). https://doi.org/10.1093/gji/ggw168 .
Grigoli, F. et al. Pick- and waveform-based techniques for real-time detection of induced seismicity. Geophys. J. Int. 213, 868–884 (2018).
doi: 10.1093/gji/ggy019
Skoumal, R. J., Brudzinski, M. R., Currie, B. S. & Ries, R. Temporal patterns of induced seismicity in Oklahoma revealed from multi-station template matching. J. Seismol. 24, 921–935 (2020).
doi: 10.1007/s10950-019-09864-9
Waldhauser, F. & Ellsworth, W. L. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bull. Seismol. Soc. Am. 90, 1353–1368 (2000).
doi: 10.1785/0120000006
Lomax, A., Virieux, J., Volant, P. & Berge-Thierry, C. Advances in Seismic Event Location 101–134 (Springer, 2000). https://doi.org/10.1007/978-94-015-9536-0_5 .
De Landro, G. et al. High-precision differential earthquake location in 3-D models: Evidence for a rheological barrier controlling the microseismicity at the Irpinia fault zone in southern Apennines. Geophys. J. Int. 203, 1821–1831 (2015).
doi: 10.1093/gji/ggv397
Poiata, N., Satriano, C., Vilotte, J.-P., Bernard, P. & Obara, K. Multiband array detection and location of seismic sources recorded by dense seismic networks. Geophys. J. Int. 205, 1548–1573 (2016).
doi: 10.1093/gji/ggw071
Grigoli, F. et al. Automated microseismic event location using Master-Event Waveform Stacking. Sci. Rep. (2016). https://doi.org/10.1038/srep25744 .
Meng, X. et al. Microseismic monitoring of stimulating Shale Gas Reservoir in SW China: 1. An improved matching and locating technique for downhole monitoring. J. Geophys. Res. 123, 1643–1658 (2018).
Grigoli, F. et al. Relative earthquake location procedure for clustered seismicity with a single station (2021). https://doi.org/10.1093/gji/ggaa607 .
Roberts, R. G., Christoffersson, A. & Cassidy, F. Real-time event detection, phase identification and source location estimation using single station three-component seismic data. Geophys. J. Int. 97, 471–480 (1989).
Harris, D. B. A waveform correlation method for identifying quarry explosions. Bull. Seismol. Soc. Am. 81, 2395–2418 (1991).
doi: 10.1785/BSSA0810062395
Gibbons, S. J. & Ringdal, F. The detection of low magnitude seismic events using array-based waveform correlation. J. Geophys. J. Int. 165, 149–166 (2006).
doi: 10.1111/j.1365-246X.2006.02865.x
Uchida, N. Detection of repeating earthquakes and their application in characterizing slow fault slip. Prog. Earth Planet. Sci. 6, 1–21 (2019).
doi: 10.1186/s40645-019-0284-z
Gao, D. & Kao, H. Optimization of the match-filtering method for robust repeating earthquake detection: The multisegment cross-correlation approach. J. Geophys. Res 125, e2020JB019714 (2020).
Schaff, D. P. & Waldhauser, F. One magnitude unit reduction in detection threshold by cross correlation applied to Parkfield (California) and China seismicity. Bull. Seismol. Soc. Am. 100, 3224–3238 (2010).
doi: 10.1785/0120100042
Vasterling, M., Wegler, U., Becker, J., Brüstle, A. & Bischoff, M. Real-time envelope cross-correlation detector: Application to induced seismicity in the Insheim and Landau deep geothermal reservoirs. J. Seismol. 21, 193–208 (2017).
doi: 10.1007/s10950-016-9597-1
Stabile, T. A., Giocoli, A., Perrone, A., Piscitelli, S. & Lapenna, V. Fluid-injection induced seismicity reveals a NE-dipping fault in the south-eastern sector of the High Agri Valley (southern Italy). Geophys. Res. Lett 41, 5847–5854 (2014).
doi: 10.1002/2014GL060948
Improta, L., Valoroso, L., Piccinini, D. & Chiarabba, C. A detailed analysis of wastewater-induced seismicity in the Val d’Agri oil field (Italy). Geophys. Res. Lett. 42, 2682–2690 (2015).
doi: 10.1002/2015GL063369
Buttinelli, M., Improta, L., Bagh, S. & Chiarabba, C. Inversion of inherited thrusts by wastewater injection induced seismicity at the Val d’Agri oilfield (Italy). Sci. Rep. (2016). https://doi.org/10.1038/srep37165 .
Improta, L. et al. Reservoir structure and wastewater-induced seismicity at the Val d’Agri Oilfield (Italy) shown by three-dimensional Vp and Vp/Vs local earthquake tomography. J. Geophys. Res. 41, 3 (2017).
Wcisło, M., Stabile, T. A., Telesca, L. & Eisner, L. Variations of attenuation and VP/VS ratio in the vicinity of wastewater injection: A case study of Costa Molina 2 well (High Agri Valley, Italy). Geophysics 83, B25–B31 (2018).
doi: 10.1190/geo2017-0123.1
Serlenga, V. & Stabile, T. A. How do local earthquake tomography and inverted dataset affect earthquake locations? The case study of High Agri Valley (Southern Italy). Geomat. Nat. Hazards Risk 10, 49–78 (2019).
doi: 10.1080/19475705.2018.1504124
Stabile, T. A. et al. Evidence of low-magnitude continued reservoir-induced seismicity associated with the Pertusillo Artificial Lake (Southern Italy). Bull. Seismol. Soc. Am. 104, 1820–1828 (2014).
doi: 10.1785/0120130333
Stabile, T. A. & The INSIEME Team. SIR-MIUR Project INSIEME—broadband seismic network in Val d’Agri (southern Italy). (2016). https://doi.org/10.7914/SN/3F_2016 .
Myhill, R., McKenzie, D. & Priestley, K. The distribution of earthquake multiplets beneath the southwest Pacific. Earth Planet. Sci. Lett. 301, 87–97 (2011).
doi: 10.1016/j.epsl.2010.10.023
INGV Seismological Data Centre. Rete Sismica Nazionale (RSN). https://doi.org/10.13127/SD/X0FXnH7QfY (2006).
Woessner, J. & Wiemer, S. Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bull. Seismol. Soc. Am. 95, 684–698 (2005).
doi: 10.1785/0120040007
Schorlemmer, D., Mele, F. & Marzocchi, W. A completeness analysis of the National Seismic Network of Italy. J. Geophys. Res. 115, 417–512 (2010).
Hager, B. H. et al. A process-based approach to understanding and managing triggered seismicity. Nature 595, 684–689 (2021).
pubmed: 34321668
doi: 10.1038/s41586-021-03668-z
Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
doi: 10.1137/0111030
Vadacca, L., Rossi, D., Scotti, A. & Buttinelli, M. Slip tendency analysis, fault reactivation potential and induced seismicity in the Val d'Agri Oilfield (Italy). J. Geophys. Res. 126, 2019JB019185 (2021).
Vidale, J. E. & Shearer, P. M. A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. J. Geophys. Res. 111, 1–12 (2006).
Tavernelli, E. & Prosser, G. The complete Apennines orogenic cycle preserved in a transient single outcrop near San Fele, Lucania, Southern Italy. J. Geol. Soc. 160, 429–434 (2003).
doi: 10.1144/001602-130
Bucci, F. et al. The history of the southern apennines of italy preserved in the geosites along a geological itinerary in the High Agri Valley. Geoheritage 11, 1489–1508 (2019).
doi: 10.1007/s12371-019-00385-y
Jaeger, J. C., Cook, N. G. W. & Zimmerman, R. W. Fundamentals of Rock Mechanics 1–489 (Blackwell Publishing, 2007).
Saar, M. & Manga, M. Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon. Earth Planet. Sci. Lett. 214, 605–618 (2003).
Dialuce, G. et al. Guidelines for Monitoring Seismicity, Ground Deformation and Pore Pressure in Subsurface Industrial Activities 1–34 (GdL MISE, 2014).
Braun, T., Danesi, S. & Morelli, A. Application of monitoring guidelines to induced seismicity in Italy. J. Seismol. 24, 1015–1028 (2020).
doi: 10.1007/s10950-019-09901-7
Zhu, W. & Beroza, G. C. PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophys. J. Int. (2018). https://doi.org/10.1093/gji/ggy423 .
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V. & Thirion, B. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Bobbio, A., Vassallo, M. & Festa, G. A local magnitude scale for Southern Italy. Bull. Seismol. Soc. Am. 99, 2461–2470 (2009).
doi: 10.1785/0120080364
Huber, P. J. Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964).
doi: 10.1214/aoms/1177703732
Zollo, A., Orefice, A. & Convertito, V. Source parameter scaling and radiation efficiency of microearthquakes along the Irpinia fault zone in southern Apennines, Italy. J. Geophys. Res. 119, 1–20 (2014).
doi: 10.1002/2013JB010116
Hanks, T. C. & Kanamori, H. A moment magnitude scale. J. Geophys. Res. 84, 2348–2350 (1979).
doi: 10.1029/JB084iB05p02348