Identifying women with increased risk of breast cancer and implementing risk-reducing strategies and supplemental imaging.
BRCA
Breast MRI
Dense breast tissue
Risk factors for breast cancer
Risk-assessment models
Journal
Breast cancer (Tokyo, Japan)
ISSN: 1880-4233
Titre abrégé: Breast Cancer
Pays: Japan
ID NLM: 100888201
Informations de publication
Date de publication:
Jan 2022
Jan 2022
Historique:
received:
21
10
2020
accepted:
16
09
2021
pubmed:
20
10
2021
medline:
10
2
2022
entrez:
19
10
2021
Statut:
ppublish
Résumé
Breast cancer (BC) is the second most common cancer in women, affecting 1 in 8 women in the United States (12.5%) in their lifetime. However, some women have a higher lifetime risk of BC because of genetic and lifestyle factors, mammographic breast density, and reproductive and hormonal factors. Because BC risk is variable, screening and prevention strategies should be individualized after considering patient-specific risk factors. Thus, health care professionals need to be able to assess risk profiles, identify high-risk women, and individualize screening and prevention strategies through a shared decision-making process. In this article, we review the risk factors for BC, risk-assessment models that identify high-risk patients, and preventive medications and lifestyle modifications that may decrease risk. We also discuss the benefits and limitations of various supplemental screening methods.
Identifiants
pubmed: 34665436
doi: 10.1007/s12282-021-01298-x
pii: 10.1007/s12282-021-01298-x
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
19-29Informations de copyright
© 2021. The Author(s), under exclusive licence to The Japanese Breast Cancer Society.
Références
Guo F, Kuo YF, Shih YCT, Giordano SH, Berenson AB. Trends in breast cancer mortality by stage at diagnosis among young women in the United States. Cancer. 2018;124(17):3500–9. https://doi.org/10.1002/cncr.31638 .
doi: 10.1002/cncr.31638
pubmed: 30189117
Couch FJ, Hart SN, Sharma P, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol. 2015;33(4):304–11. https://doi.org/10.1200/JCO.2014.57.1414 .
doi: 10.1200/JCO.2014.57.1414
Olopade OI, Grushko TA, Nanda R, Huo D. Advances in breast cancer: pathways to personalized medicine. Clin Cancer Res. 2008;14(24):7988–99. https://doi.org/10.1158/1078-0432.CCR-08-1211 .
doi: 10.1158/1078-0432.CCR-08-1211
pubmed: 19088015
pmcid: 4535810
Newman L. US Preventive Services Task Force breast cancer recommendation statement on risk assessment, genetic counseling, and genetic testing for BRCA-related cancer. JAMA Surg. 2019;154(10):895–6. https://doi.org/10.1001/jamasurg.2019.3184 .
doi: 10.1001/jamasurg.2019.3184
pubmed: 31429868
Newman LA, Reis-Filho JS, Morrow M, Carey LA, King TA. The 2014 Society of Surgical Oncology Susan G. Komen for the Cure Symposium: triple-negative breast cancer. Ann Surg Oncol. 2015;22(3):874–82. https://doi.org/10.1245/s10434-014-4279-0 .
doi: 10.1245/s10434-014-4279-0
pubmed: 25527230
Frey MK, Kopparam RV, Ni Zhou Z, et al. Prevalence of nonfounder BRCA1/2 mutations in Ashkenazi Jewish patients presenting for genetic testing at a hereditary breast and ovarian cancer center. Cancer. 2019;125(5):690–7. https://doi.org/10.1002/cncr.31856 .
doi: 10.1002/cncr.31856
pubmed: 30480775
Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–16. https://doi.org/10.1001/jama.2017.7112 .
doi: 10.1001/jama.2017.7112
Couch FJ, Nathanson KL, Offit K. Two decades after BRCA: setting paradigms in personalized cancer care and prevention. Science. 2014;343(6178):1466–70. https://doi.org/10.1126/science.1251827 .
doi: 10.1126/science.1251827
pubmed: 24675953
pmcid: 4074902
Chen LY, Hu J, Tsang JYS, et al. Diagnostic upgrade of atypical ductal hyperplasia of the breast based on evaluation of histopathological features and calcification on core needle biopsy. Histopathology. 2019;75(3):320–8. https://doi.org/10.1111/his.13881 .
doi: 10.1111/his.13881
pubmed: 31013355
Kim JO, Schaid DJ, Vachon CM, et al. Impact of personalized genetic breast cancer risk estimation with polygenic risk scores on preventive endocrine therapy intention and uptake. Cancer Prev Res (Phila). 2021;14(2):175–84. https://doi.org/10.1158/1940-6207.CAPR-20-0154 .
doi: 10.1158/1940-6207.CAPR-20-0154
Nelson HD, Pappas M, Cantor A, Haney E, Holmes R. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2019;322(7):666–85. https://doi.org/10.1001/jama.2019.8430 .
doi: 10.1001/jama.2019.8430
pubmed: 31429902
Farkas A, Vanderberg R, Merriam S, DiNardo D. Breast cancer chemoprevention: a practical guide for the primary care provider. J Womens Health (Larchmt). 2020;29(1):46–56. https://doi.org/10.1089/jwh.2018.7643 .
doi: 10.1089/jwh.2018.7643
Bilimoria MM, Morrow M. The woman at increased risk for breast cancer: evaluation and management strategies. CA Cancer J Clin. 1995;45(5):263–78. https://doi.org/10.3322/canjclin.45.5.263 .
doi: 10.3322/canjclin.45.5.263
pubmed: 7656130
Stachs A, Stubert J, Reimer T, Hartmann S. Benign breast disease in women. Dtsch Arztebl Int. 2019;116(33–34):565–74. https://doi.org/10.3238/arztebl.2019.0565 .
doi: 10.3238/arztebl.2019.0565
pubmed: 31554551
pmcid: 31554551
Racz JM, Carter JM, Degnim AC. Challenging atypical breast lesions including flat epithelial atypia, radial scar, and intraductal papilloma. Ann Surg Oncol. 2017;24(10):2842–7. https://doi.org/10.1245/s10434-017-5980-6 .
doi: 10.1245/s10434-017-5980-6
pubmed: 28766216
Lewin AA, Mercado CL. Atypical ductal hyperplasia and lobular neoplasia: update and easing of guidelines. AJR Am J Roentgenol. 2020;214(2):265–75. https://doi.org/10.2214/AJR.19.21991 .
doi: 10.2214/AJR.19.21991
pubmed: 31825261
Hartmann LC, Degnim AC, Dupont WD. Atypical hyperplasia of the breast. N Engl J Med. 2015;372(13):1271–2. https://doi.org/10.1056/NEJMc1501046 .
doi: 10.1056/NEJMc1501046
pubmed: 25806929
Tomlinson-Hansen S, Khan M, Cassaro S. Atypical ductal hyperplasia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.
Schiaffino S, Calabrese M, Melani EF, et al. Upgrade rate of percutaneously diagnosed pure atypical ductal hyperplasia: systematic review and meta-analysis of 6458 lesions. Radiology. 2020;294(1):76–86. https://doi.org/10.1148/radiol.2019190748 .
doi: 10.1148/radiol.2019190748
pubmed: 31660803
Moon HJ, Jung I, Kim MJ, Kim EK. Breast papilloma without atypia and risk of breast carcinoma. Breast J. 2014;20(5):525–33. https://doi.org/10.1111/tbj.12309 .
doi: 10.1111/tbj.12309
pubmed: 25041712
Salman NA, Davies G, Majidy F, et al. Association of high risk human papillomavirus and breast cancer: a UK based study. Sci Rep. 2017;7:43591. https://doi.org/10.1038/srep43591 .
doi: 10.1038/srep43591
pubmed: 28240743
pmcid: 5378907
Chang Sen LQ, Berg WA, Carter GJ. Upgrade rate and imaging features of atypical apocrine lesions. Breast J. 2017;23(5):569–78. https://doi.org/10.1111/tbj.12789 .
doi: 10.1111/tbj.12789
pubmed: 28333404
King TA, Pilewskie M, Muhsen S, et al. Lobular carcinoma in situ: a 29-year longitudinal experience evaluating clinicopathologic features and breast cancer risk. J Clin Oncol. 2015;33(33):3945–52. https://doi.org/10.1200/JCO.2015.61.4743 .
doi: 10.1200/JCO.2015.61.4743
pubmed: 26371145
pmcid: 4934644
McEvoy MP, Coopey SB, Mazzola E, et al. Breast cancer risk and follow-up recommendations for young women diagnosed with atypical hyperplasia and lobular carcinoma in situ (LCIS). Ann Surg Oncol. 2015;22(10):3346–9. https://doi.org/10.1245/s10434-015-4747-1 .
doi: 10.1245/s10434-015-4747-1
pubmed: 26242364
Wong SM, Stout NK, Punglia RS, Prakash I, Sagara Y, Golshan M. Breast cancer prevention strategies in lobular carcinoma in situ: a decision analysis. Cancer. 2017;123(14):2609–17. https://doi.org/10.1002/cncr.30644 .
doi: 10.1002/cncr.30644
pubmed: 28221673
Masannat YA, Husain E, Roylance R, et al. Pleomorphic LCIS what do we know? A UK multicenter audit of pleomorphic lobular carcinoma in situ. Breast. 2018;38:120–4. https://doi.org/10.1016/j.breast.2017.12.011 .
doi: 10.1016/j.breast.2017.12.011
pubmed: 29310036
Yager JD, Liehr JG. Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol. 1996;36:203–32. https://doi.org/10.1146/annurev.pa.36.040196.001223 .
doi: 10.1146/annurev.pa.36.040196.001223
pubmed: 8725388
Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118,964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012;13(11):1141–51. https://doi.org/10.1016/s1470-2045(12)70425-4 .
doi: 10.1016/s1470-2045(12)70425-4
pmcid: 3488186
Russo J, Mailo D, Hu YF, Balogh G, Sheriff F, Russo IH. Breast differentiation and its implication in cancer prevention. Clin Cancer Res. 2005;11(2 Pt 2):931s-s936.
pubmed: 15701889
Nindrea RD, Aryandono T, Lazuardi L. Breast cancer risk from modifiable and non-modifiable risk factors among women in Southeast Asia: a meta-analysis. Asian Pac J Cancer Prev. 2017;18(12):3201–6. https://doi.org/10.22034/APJCP.2017.18.12.3201 .
doi: 10.22034/APJCP.2017.18.12.3201
pubmed: 29281867
pmcid: 5980871
Li X, Wang H, Xu HP, et al. Menopausal symptoms and quality of life of hormone receptor positive breast cancer patients at different endocrine therapy time. Zhonghua Zhong Liu Za Zhi. 2020;42(1):55–60. https://doi.org/10.3760/cma.j.issn.0253-3766.2020.01.008 .
doi: 10.3760/cma.j.issn.0253-3766.2020.01.008
pubmed: 32023770
Kim Y, Choi JY, Lee KM, et al. Dose-dependent protective effect of breast-feeding against breast cancer among ever-lactated women in Korea. Eur J Cancer Prev. 2007;16(2):124–9. https://doi.org/10.1097/01.cej.0000228400.07364.52 .
doi: 10.1097/01.cej.0000228400.07364.52
pubmed: 17297388
Nevler A, Shabtai E, Rosin D, Hoffman A, Gutman M, Shabtai M. Mammographic breast density as a predictor of radiological findings requiring further investigation. Isr Med Assoc J. 2016;18(1):32–5.
pubmed: 26964277
Harvey JA, Yaffe MJ, D’Orsi C, Sickles EA. Density and breast cancer risk. Radiology. 2013;267(2):657–8. https://doi.org/10.1148/radiol.13122477 .
doi: 10.1148/radiol.13122477
pubmed: 23610099
Pisano E. Issues in breast cancer screening. Technol Cancer Res Treat. 2005;4(1):5–9. https://doi.org/10.1177/153303460500400102 .
doi: 10.1177/153303460500400102
pubmed: 15649082
Hooley RJ, Greenberg KL, Stackhouse RM, Geisel JL, Butler RS, Philpotts LE. Screening US in patients with mammographically dense breasts: initial experience with Connecticut Public Act 09–41. Radiology. 2012;265(1):59–69. https://doi.org/10.1148/radiol.12120621 .
doi: 10.1148/radiol.12120621
pubmed: 22723501
Hayes J, Richardson A, Frampton C. Population attributable risks for modifiable lifestyle factors and breast cancer in New Zealand women. Intern Med J. 2013;43(11):1198–204. https://doi.org/10.1111/imj.12256 .
doi: 10.1111/imj.12256
pubmed: 23910051
Arthur R, Kirsh VA, Kreiger N, Rohan T. A healthy lifestyle index and its association with risk of breast, endometrial, and ovarian cancer among Canadian women. Cancer Causes Control. 2018;29(6):485–93. https://doi.org/10.1007/s10552-018-1032-1 .
doi: 10.1007/s10552-018-1032-1
pubmed: 29667103
Renehan AG, Pegington M, Harvie MN, et al. Young adulthood body mass index, adult weight gain and breast cancer risk: the PROCAS Study (United Kingdom). Br J Cancer. 2020;122(10):1552–61. https://doi.org/10.1038/s41416-020-0807-9 .
doi: 10.1038/s41416-020-0807-9
pubmed: 32203222
pmcid: 7217761
Rosner B, Eliassen AH, Toriola AT, et al. Weight and weight changes in early adulthood and later breast cancer risk. Int J Cancer. 2017;140(9):2003–14. https://doi.org/10.1002/ijc.30627 .
doi: 10.1002/ijc.30627
pubmed: 28133728
pmcid: 5798241
Allen JD, Savadatti S, Levy AG. The transition from breast cancer “patient” to “survivor.” Psychooncology. 2009;18(1):71–8. https://doi.org/10.1002/pon.1380 .
doi: 10.1002/pon.1380
pubmed: 18613299
Hamajima N, Hirose K, Tajima K, et al. Alcohol, tobacco and breast cancer–collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer. 2002;87(11):1234–45. https://doi.org/10.1038/sj.bjc.6600596 .
doi: 10.1038/sj.bjc.6600596
pubmed: 12439712
Hodis HN, Sarrel PM. Menopausal hormone therapy and breast cancer: what is the evidence from randomized trials? Climacteric. 2018;21(6):521–8. https://doi.org/10.1080/13697137.2018.1514008 .
doi: 10.1080/13697137.2018.1514008
pubmed: 30296850
pmcid: 6386596
Santen RJ, Heitjan DF, Gompel A, et al. Underlying breast cancer risk and menopausal hormone therapy. J Clin Endocrinol Metab. 2020. https://doi.org/10.1210/clinem/dgaa073 .
doi: 10.1210/clinem/dgaa073
pubmed: 32882039
pmcid: 7060760
Narod SA. Hormone replacement therapy and the risk of breast cancer. Nat Rev Clin Oncol. 2011;8(11):669–76. https://doi.org/10.1038/nrclinonc.2011.110 .
doi: 10.1038/nrclinonc.2011.110
pubmed: 21808267
American College of O, Gynecologists’ Committee on Gynecologic P, Farrell R. ACOG Committee Opinion No. 659: The use of vaginal estrogen in women with a history of estrogen-dependent breast cancer. Obstet Gynecol. 2016;127(3):e93-6. https://doi.org/10.1097/AOG.0000000000001351 .
doi: 10.1097/AOG.0000000000001351
Valero MG, Zabor EC, Park A, et al. The Tyrer-Cuzick model inaccurately predicts invasive breast cancer risk in women with LCIS. Ann Surg Oncol. 2020;27(3):736–40. https://doi.org/10.1245/s10434-019-07814-w .
doi: 10.1245/s10434-019-07814-w
pubmed: 31559544
Ozanne EM, Howe R, Mallinson D, Esserman L, Van’t Veer LJ, Kaplan CP. Evaluation of National Comprehensive Cancer Network guideline-based Tool for Risk Assessment for breast and ovarian Cancer (N-TRAC): a patient-reported survey for genetic high-risk assessment for breast and ovarian cancers in women. J Genet Couns. 2019;28(3):507–15. https://doi.org/10.1002/jgc4.1051 .
doi: 10.1002/jgc4.1051
pubmed: 30663827
Ozanne EM, Drohan B, Bosinoff P, et al. Which risk model to use? Clinical implications of the ACS MRI screening guidelines. Cancer Epidemiol Biomark Prev. 2013;22(1):146–9. https://doi.org/10.1158/1055-9965.EPI-12-0570 .
doi: 10.1158/1055-9965.EPI-12-0570
Mazzola E, Blackford A, Parmigiani G, Biswas S. Recent enhancements to the genetic risk prediction model BRCAPRO. Cancer Inform. 2015;14(Suppl 2):147–57. https://doi.org/10.4137/CIN.S17292 .
doi: 10.4137/CIN.S17292
pubmed: 25983549
pmcid: 4428390
Amir E, Freedman OC, Seruga B, Evans DG. Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst. 2010;102(10):680–91. https://doi.org/10.1093/jnci/djq088 .
doi: 10.1093/jnci/djq088
pubmed: 20427433
Wang X, Huang Y, Li L, Dai H, Song F, Chen K. Assessment of performance of the Gail model for predicting breast cancer risk: a systematic review and meta-analysis with trial sequential analysis. Breast Cancer Res. 2018;20(1):18. https://doi.org/10.1186/s13058-018-0947-5 .
doi: 10.1186/s13058-018-0947-5
pubmed: 29534738
pmcid: 5850919
Niehoff NM, White AJ, Sandler DP. Physical activity and breast cancer: focusing on high-risk subgroups and putting recommendations in context. Cancer Res. 2020;80(1):23–4. https://doi.org/10.1158/0008-5472.CAN-19-3350 .
doi: 10.1158/0008-5472.CAN-19-3350
pubmed: 31900281
pmcid: 7456185
Tice JA, Bissell MCS, Miglioretti DL, et al. Validation of the breast cancer surveillance consortium model of breast cancer risk. Breast Cancer Res Treat. 2019;175(2):519–23. https://doi.org/10.1007/s10549-019-05167-2 .
doi: 10.1007/s10549-019-05167-2
pubmed: 30796654
pmcid: 7138025
Monticciolo DL, Newell MS, Moy L, Niell B, Monsees B, Sickles EA. Breast cancer screening in women at higher-than-average risk: recommendations from the ACR. J Am Coll Radiol. 2018;15(3 Pt A):408–14. https://doi.org/10.1016/j.jacr.2017.11.034 .
doi: 10.1016/j.jacr.2017.11.034
pubmed: 29371086
Meads C, Ahmed I, Riley RD. A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance. Breast Cancer Res Treat. 2012;132(2):365–77. https://doi.org/10.1007/s10549-011-1818-2 .
doi: 10.1007/s10549-011-1818-2
pubmed: 22037780
Vecchio MM. Breast cancer screening in the high-risk population. Asia Pac J Oncol Nurs. 2018;5(1):46–50. https://doi.org/10.4103/apjon.apjon_53_17 .
doi: 10.4103/apjon.apjon_53_17
pubmed: 29379834
pmcid: 5763440
Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57(2):75–89. https://doi.org/10.3322/canjclin.57.2.75 .
doi: 10.3322/canjclin.57.2.75
pubmed: 17392385
Warner E, Plewes DB, Hill KA, et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA. 2004;292(11):1317–25. https://doi.org/10.1001/jama.292.11.1317 .
doi: 10.1001/jama.292.11.1317
pubmed: 15367553
Berg WA, Zhang Z, Lehrer D, et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA. 2012;307(13):1394–404. https://doi.org/10.1001/jama.2012.388 .
doi: 10.1001/jama.2012.388
pubmed: 22474203
pmcid: 3891886
Kriege M, Brekelmans CT, Boetes C, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med. 2004;351(5):427–37. https://doi.org/10.1056/NEJMoa031759 .
doi: 10.1056/NEJMoa031759
pubmed: 15282350
Tosteson ANA. An abbreviated MRI protocol for breast cancer screening in women with dense breasts: promising results, but further evaluation required prior to widespread implementation. JAMA. 2020;323(8):719–21. https://doi.org/10.1001/jama.2020.0357 .
doi: 10.1001/jama.2020.0357
pubmed: 32096832
Saulsberry L, Pace LE, Keating NL. The impact of breast density notification laws on supplemental breast imaging and breast biopsy. J Gen Intern Med. 2019;34(8):1441–51. https://doi.org/10.1007/s11606-019-05026-2 .
doi: 10.1007/s11606-019-05026-2
pubmed: 31144277
pmcid: 6667574
Geisel J, Raghu M, Hooley R. The role of ultrasound in breast cancer screening: the case for and against ultrasound. Semin Ultrasound CT MR. 2018;39(1):25–34. https://doi.org/10.1053/j.sult.2017.09.006 .
doi: 10.1053/j.sult.2017.09.006
pubmed: 29317037
Zuley ML, Bandos AI, Abrams GS, et al. Contrast enhanced digital mammography (CEDM) helps to safely reduce benign breast biopsies for low to moderately suspicious soft tissue lesions. Acad Radiol. 2020;27(7):969–76. https://doi.org/10.1016/j.acra.2019.07.020 .
doi: 10.1016/j.acra.2019.07.020
pubmed: 31495761
Sumkin JH, Berg WA, Carter GJ, et al. Diagnostic performance of MRI, molecular breast imaging, and contrast-enhanced mammography in women with newly diagnosed breast cancer. Radiology. 2019;293(3):531–40. https://doi.org/10.1148/radiol.2019190887 .
doi: 10.1148/radiol.2019190887
pubmed: 31660801
Sorin V, Yagil Y, Yosepovich A, et al. Contrast-enhanced spectral mammography in women with intermediate breast cancer risk and dense breasts. AJR Am J Roentgenol. 2018;211(5):W267–74. https://doi.org/10.2214/AJR.17.19355 .
doi: 10.2214/AJR.17.19355
pubmed: 30240292
Rhodes DJ, Hruska CB, Conners AL, et al. Journal club: molecular breast imaging at reduced radiation dose for supplemental screening in mammographically dense breasts. AJR Am J Roentgenol. 2015;204(2):241–51. https://doi.org/10.2214/ajr.14.13357 .
doi: 10.2214/ajr.14.13357
pubmed: 25615744
pmcid: 4423604
Evans A, Trimboli RM, Athanasiou A, et al. Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Imaging. 2018;9(4):449–61. https://doi.org/10.1007/s13244-018-0636-z .
doi: 10.1007/s13244-018-0636-z
pubmed: 30094592
pmcid: 6108964
Moyer VA, US Preventive Services Task Force. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: US Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;160(4):271–81. https://doi.org/10.7326/M13-2747 .
doi: 10.7326/M13-2747
pubmed: 24366376
Visvanathan K, Hurley P, Bantug E, et al. Use of pharmacologic interventions for breast cancer risk reduction: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2013;31(23):2942–62. https://doi.org/10.1200/JCO.2013.49.3122 .
doi: 10.1200/JCO.2013.49.3122
pubmed: 23835710
Henry NL, Chan HP, Dantzer J, et al. Aromatase inhibitor-induced modulation of breast density: clinical and genetic effects. Br J Cancer. 2013;109(9):2331–9. https://doi.org/10.1038/bjc.2013.587 .
doi: 10.1038/bjc.2013.587
pubmed: 24084768
pmcid: 3817329
Liu JH. Selective estrogen receptor modulators (SERMS): keys to understanding their function. Menopause. 2020. https://doi.org/10.1097/GME.0000000000001585 .
doi: 10.1097/GME.0000000000001585
pubmed: 33323763
pmcid: 7709925
Guerrieri-Gonzaga A, Sestak I, Lazzeroni M, et al. Benefit of low-dose tamoxifen in a large observational cohort of high risk ER positive breast DCIS. Int J Cancer. 2016;139(9):2127–34. https://doi.org/10.1002/ijc.30254 .
doi: 10.1002/ijc.30254
pubmed: 27381855
McIntosh JG, Minshall J, Saya S, et al. Benefits and harms of selective oestrogen receptor modulators (SERMs) to reduce breast cancer risk: a cross-sectional study of methods to communicate risk in primary care. Br J Gen Pract. 2019;69(689):e836–42. https://doi.org/10.3399/bjgp19X706841 .
doi: 10.3399/bjgp19X706841
pubmed: 31636127
pmcid: 6805163
Cuzick J, Sestak I, Forbes JF, et al. Use of anastrozole for breast cancer prevention (IBIS-II): long-term results of a randomised controlled trial. Lancet. 2020;395(10218):117–22. https://doi.org/10.1016/S0140-6736(19)32955-1 .
doi: 10.1016/S0140-6736(19)32955-1
pubmed: 31839281
pmcid: 6961114
Sini V, Botticelli A, Lunardi G, Gori S, Marchetti P. Pharmacogenetics and aromatase inhibitor induced side effects in breast cancer patients. Pharmacogenomics. 2017;18(8):821–30. https://doi.org/10.2217/pgs-2017-0006 .
doi: 10.2217/pgs-2017-0006
pubmed: 28592202
Tseng OL, Spinelli JJ, Gotay CC, Ho WY, McBride ML, Dawes MG. Aromatase inhibitors are associated with a higher fracture risk than tamoxifen: a systematic review and meta-analysis. Ther Adv Musculoskelet Dis. 2018;10(4):71–90. https://doi.org/10.1177/1759720X18759291 .
doi: 10.1177/1759720X18759291
pubmed: 29619093
pmcid: 5871065
Narod SA, Brunet JS, Ghadirian P, et al. Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study Hereditary Breast Cancer Clinical Study Group. Lancet. 2000;356(9245):1876–81. https://doi.org/10.1016/s0140-6736(00)03258-x .
doi: 10.1016/s0140-6736(00)03258-x
pubmed: 11130383
Cuzick J, Sestak I, Thorat MA. Impact of preventive therapy on the risk of breast cancer among women with benign breast disease. Breast. 2015;24(Suppl 2):S51–5. https://doi.org/10.1016/j.breast.2015.07.013 .
doi: 10.1016/j.breast.2015.07.013
pubmed: 26255741
Li X, You R, Wang X, et al. Effectiveness of prophylactic surgeries in BRCA1 or BRCA2 mutation carriers: a meta-analysis and systematic review. Clin Cancer Res. 2016;22(15):3971–81. https://doi.org/10.1158/1078-0432.CCR-15-1465 .
doi: 10.1158/1078-0432.CCR-15-1465
pubmed: 26979395
De Felice F, Marchetti C, Musella A, et al. Bilateral risk-reduction mastectomy in BRCA1 and BRCA2 mutation carriers: a meta-analysis. Ann Surg Oncol. 2015;22(9):2876–80. https://doi.org/10.1245/s10434-015-4532-1 .
doi: 10.1245/s10434-015-4532-1
pubmed: 25808098
Gamble C, Havrilesky LJ, Myers ER, et al. Cost effectiveness of risk-reducing mastectomy versus surveillance in BRCA mutation carriers with a history of ovarian cancer. Ann Surg Oncol. 2017;24(11):3116–23. https://doi.org/10.1245/s10434-017-5995-z .
doi: 10.1245/s10434-017-5995-z
pubmed: 28699130
pmcid: 5990891
Co M, Chiu R, Chiu TM, et al. Nipple-sparing mastectomy and its application on BRCA gene mutation carrier. Clin Breast Cancer. 2017;17(8):581–4. https://doi.org/10.1016/j.clbc.2017.02.001 .
doi: 10.1016/j.clbc.2017.02.001
pubmed: 28428099
Bellanger M, Barry K, Rana J, Regnaux JP. Cost-effectiveness of lifestyle-related interventions for the primary prevention of breast cancer: a rapid review. Front Med (Lausanne). 2019;6:325. https://doi.org/10.3389/fmed.2019.00325 .
doi: 10.3389/fmed.2019.00325