Identifying women with increased risk of breast cancer and implementing risk-reducing strategies and supplemental imaging.


Journal

Breast cancer (Tokyo, Japan)
ISSN: 1880-4233
Titre abrégé: Breast Cancer
Pays: Japan
ID NLM: 100888201

Informations de publication

Date de publication:
Jan 2022
Historique:
received: 21 10 2020
accepted: 16 09 2021
pubmed: 20 10 2021
medline: 10 2 2022
entrez: 19 10 2021
Statut: ppublish

Résumé

Breast cancer (BC) is the second most common cancer in women, affecting 1 in 8 women in the United States (12.5%) in their lifetime. However, some women have a higher lifetime risk of BC because of genetic and lifestyle factors, mammographic breast density, and reproductive and hormonal factors. Because BC risk is variable, screening and prevention strategies should be individualized after considering patient-specific risk factors. Thus, health care professionals need to be able to assess risk profiles, identify high-risk women, and individualize screening and prevention strategies through a shared decision-making process. In this article, we review the risk factors for BC, risk-assessment models that identify high-risk patients, and preventive medications and lifestyle modifications that may decrease risk. We also discuss the benefits and limitations of various supplemental screening methods.

Identifiants

pubmed: 34665436
doi: 10.1007/s12282-021-01298-x
pii: 10.1007/s12282-021-01298-x
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

19-29

Informations de copyright

© 2021. The Author(s), under exclusive licence to The Japanese Breast Cancer Society.

Références

Guo F, Kuo YF, Shih YCT, Giordano SH, Berenson AB. Trends in breast cancer mortality by stage at diagnosis among young women in the United States. Cancer. 2018;124(17):3500–9. https://doi.org/10.1002/cncr.31638 .
doi: 10.1002/cncr.31638 pubmed: 30189117
Couch FJ, Hart SN, Sharma P, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol. 2015;33(4):304–11. https://doi.org/10.1200/JCO.2014.57.1414 .
doi: 10.1200/JCO.2014.57.1414
Olopade OI, Grushko TA, Nanda R, Huo D. Advances in breast cancer: pathways to personalized medicine. Clin Cancer Res. 2008;14(24):7988–99. https://doi.org/10.1158/1078-0432.CCR-08-1211 .
doi: 10.1158/1078-0432.CCR-08-1211 pubmed: 19088015 pmcid: 4535810
Newman L. US Preventive Services Task Force breast cancer recommendation statement on risk assessment, genetic counseling, and genetic testing for BRCA-related cancer. JAMA Surg. 2019;154(10):895–6. https://doi.org/10.1001/jamasurg.2019.3184 .
doi: 10.1001/jamasurg.2019.3184 pubmed: 31429868
Newman LA, Reis-Filho JS, Morrow M, Carey LA, King TA. The 2014 Society of Surgical Oncology Susan G. Komen for the Cure Symposium: triple-negative breast cancer. Ann Surg Oncol. 2015;22(3):874–82. https://doi.org/10.1245/s10434-014-4279-0 .
doi: 10.1245/s10434-014-4279-0 pubmed: 25527230
Frey MK, Kopparam RV, Ni Zhou Z, et al. Prevalence of nonfounder BRCA1/2 mutations in Ashkenazi Jewish patients presenting for genetic testing at a hereditary breast and ovarian cancer center. Cancer. 2019;125(5):690–7. https://doi.org/10.1002/cncr.31856 .
doi: 10.1002/cncr.31856 pubmed: 30480775
Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–16. https://doi.org/10.1001/jama.2017.7112 .
doi: 10.1001/jama.2017.7112
Couch FJ, Nathanson KL, Offit K. Two decades after BRCA: setting paradigms in personalized cancer care and prevention. Science. 2014;343(6178):1466–70. https://doi.org/10.1126/science.1251827 .
doi: 10.1126/science.1251827 pubmed: 24675953 pmcid: 4074902
Chen LY, Hu J, Tsang JYS, et al. Diagnostic upgrade of atypical ductal hyperplasia of the breast based on evaluation of histopathological features and calcification on core needle biopsy. Histopathology. 2019;75(3):320–8. https://doi.org/10.1111/his.13881 .
doi: 10.1111/his.13881 pubmed: 31013355
Kim JO, Schaid DJ, Vachon CM, et al. Impact of personalized genetic breast cancer risk estimation with polygenic risk scores on preventive endocrine therapy intention and uptake. Cancer Prev Res (Phila). 2021;14(2):175–84. https://doi.org/10.1158/1940-6207.CAPR-20-0154 .
doi: 10.1158/1940-6207.CAPR-20-0154
Nelson HD, Pappas M, Cantor A, Haney E, Holmes R. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2019;322(7):666–85. https://doi.org/10.1001/jama.2019.8430 .
doi: 10.1001/jama.2019.8430 pubmed: 31429902
Farkas A, Vanderberg R, Merriam S, DiNardo D. Breast cancer chemoprevention: a practical guide for the primary care provider. J Womens Health (Larchmt). 2020;29(1):46–56. https://doi.org/10.1089/jwh.2018.7643 .
doi: 10.1089/jwh.2018.7643
Bilimoria MM, Morrow M. The woman at increased risk for breast cancer: evaluation and management strategies. CA Cancer J Clin. 1995;45(5):263–78. https://doi.org/10.3322/canjclin.45.5.263 .
doi: 10.3322/canjclin.45.5.263 pubmed: 7656130
Stachs A, Stubert J, Reimer T, Hartmann S. Benign breast disease in women. Dtsch Arztebl Int. 2019;116(33–34):565–74. https://doi.org/10.3238/arztebl.2019.0565 .
doi: 10.3238/arztebl.2019.0565 pubmed: 31554551 pmcid: 31554551
Racz JM, Carter JM, Degnim AC. Challenging atypical breast lesions including flat epithelial atypia, radial scar, and intraductal papilloma. Ann Surg Oncol. 2017;24(10):2842–7. https://doi.org/10.1245/s10434-017-5980-6 .
doi: 10.1245/s10434-017-5980-6 pubmed: 28766216
Lewin AA, Mercado CL. Atypical ductal hyperplasia and lobular neoplasia: update and easing of guidelines. AJR Am J Roentgenol. 2020;214(2):265–75. https://doi.org/10.2214/AJR.19.21991 .
doi: 10.2214/AJR.19.21991 pubmed: 31825261
Hartmann LC, Degnim AC, Dupont WD. Atypical hyperplasia of the breast. N Engl J Med. 2015;372(13):1271–2. https://doi.org/10.1056/NEJMc1501046 .
doi: 10.1056/NEJMc1501046 pubmed: 25806929
Tomlinson-Hansen S, Khan M, Cassaro S. Atypical ductal hyperplasia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.
Schiaffino S, Calabrese M, Melani EF, et al. Upgrade rate of percutaneously diagnosed pure atypical ductal hyperplasia: systematic review and meta-analysis of 6458 lesions. Radiology. 2020;294(1):76–86. https://doi.org/10.1148/radiol.2019190748 .
doi: 10.1148/radiol.2019190748 pubmed: 31660803
Moon HJ, Jung I, Kim MJ, Kim EK. Breast papilloma without atypia and risk of breast carcinoma. Breast J. 2014;20(5):525–33. https://doi.org/10.1111/tbj.12309 .
doi: 10.1111/tbj.12309 pubmed: 25041712
Salman NA, Davies G, Majidy F, et al. Association of high risk human papillomavirus and breast cancer: a UK based study. Sci Rep. 2017;7:43591. https://doi.org/10.1038/srep43591 .
doi: 10.1038/srep43591 pubmed: 28240743 pmcid: 5378907
Chang Sen LQ, Berg WA, Carter GJ. Upgrade rate and imaging features of atypical apocrine lesions. Breast J. 2017;23(5):569–78. https://doi.org/10.1111/tbj.12789 .
doi: 10.1111/tbj.12789 pubmed: 28333404
King TA, Pilewskie M, Muhsen S, et al. Lobular carcinoma in situ: a 29-year longitudinal experience evaluating clinicopathologic features and breast cancer risk. J Clin Oncol. 2015;33(33):3945–52. https://doi.org/10.1200/JCO.2015.61.4743 .
doi: 10.1200/JCO.2015.61.4743 pubmed: 26371145 pmcid: 4934644
McEvoy MP, Coopey SB, Mazzola E, et al. Breast cancer risk and follow-up recommendations for young women diagnosed with atypical hyperplasia and lobular carcinoma in situ (LCIS). Ann Surg Oncol. 2015;22(10):3346–9. https://doi.org/10.1245/s10434-015-4747-1 .
doi: 10.1245/s10434-015-4747-1 pubmed: 26242364
Wong SM, Stout NK, Punglia RS, Prakash I, Sagara Y, Golshan M. Breast cancer prevention strategies in lobular carcinoma in situ: a decision analysis. Cancer. 2017;123(14):2609–17. https://doi.org/10.1002/cncr.30644 .
doi: 10.1002/cncr.30644 pubmed: 28221673
Masannat YA, Husain E, Roylance R, et al. Pleomorphic LCIS what do we know? A UK multicenter audit of pleomorphic lobular carcinoma in situ. Breast. 2018;38:120–4. https://doi.org/10.1016/j.breast.2017.12.011 .
doi: 10.1016/j.breast.2017.12.011 pubmed: 29310036
Yager JD, Liehr JG. Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol. 1996;36:203–32. https://doi.org/10.1146/annurev.pa.36.040196.001223 .
doi: 10.1146/annurev.pa.36.040196.001223 pubmed: 8725388
Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118,964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012;13(11):1141–51. https://doi.org/10.1016/s1470-2045(12)70425-4 .
doi: 10.1016/s1470-2045(12)70425-4 pmcid: 3488186
Russo J, Mailo D, Hu YF, Balogh G, Sheriff F, Russo IH. Breast differentiation and its implication in cancer prevention. Clin Cancer Res. 2005;11(2 Pt 2):931s-s936.
pubmed: 15701889
Nindrea RD, Aryandono T, Lazuardi L. Breast cancer risk from modifiable and non-modifiable risk factors among women in Southeast Asia: a meta-analysis. Asian Pac J Cancer Prev. 2017;18(12):3201–6. https://doi.org/10.22034/APJCP.2017.18.12.3201 .
doi: 10.22034/APJCP.2017.18.12.3201 pubmed: 29281867 pmcid: 5980871
Li X, Wang H, Xu HP, et al. Menopausal symptoms and quality of life of hormone receptor positive breast cancer patients at different endocrine therapy time. Zhonghua Zhong Liu Za Zhi. 2020;42(1):55–60. https://doi.org/10.3760/cma.j.issn.0253-3766.2020.01.008 .
doi: 10.3760/cma.j.issn.0253-3766.2020.01.008 pubmed: 32023770
Kim Y, Choi JY, Lee KM, et al. Dose-dependent protective effect of breast-feeding against breast cancer among ever-lactated women in Korea. Eur J Cancer Prev. 2007;16(2):124–9. https://doi.org/10.1097/01.cej.0000228400.07364.52 .
doi: 10.1097/01.cej.0000228400.07364.52 pubmed: 17297388
Nevler A, Shabtai E, Rosin D, Hoffman A, Gutman M, Shabtai M. Mammographic breast density as a predictor of radiological findings requiring further investigation. Isr Med Assoc J. 2016;18(1):32–5.
pubmed: 26964277
Harvey JA, Yaffe MJ, D’Orsi C, Sickles EA. Density and breast cancer risk. Radiology. 2013;267(2):657–8. https://doi.org/10.1148/radiol.13122477 .
doi: 10.1148/radiol.13122477 pubmed: 23610099
Pisano E. Issues in breast cancer screening. Technol Cancer Res Treat. 2005;4(1):5–9. https://doi.org/10.1177/153303460500400102 .
doi: 10.1177/153303460500400102 pubmed: 15649082
Hooley RJ, Greenberg KL, Stackhouse RM, Geisel JL, Butler RS, Philpotts LE. Screening US in patients with mammographically dense breasts: initial experience with Connecticut Public Act 09–41. Radiology. 2012;265(1):59–69. https://doi.org/10.1148/radiol.12120621 .
doi: 10.1148/radiol.12120621 pubmed: 22723501
Hayes J, Richardson A, Frampton C. Population attributable risks for modifiable lifestyle factors and breast cancer in New Zealand women. Intern Med J. 2013;43(11):1198–204. https://doi.org/10.1111/imj.12256 .
doi: 10.1111/imj.12256 pubmed: 23910051
Arthur R, Kirsh VA, Kreiger N, Rohan T. A healthy lifestyle index and its association with risk of breast, endometrial, and ovarian cancer among Canadian women. Cancer Causes Control. 2018;29(6):485–93. https://doi.org/10.1007/s10552-018-1032-1 .
doi: 10.1007/s10552-018-1032-1 pubmed: 29667103
Renehan AG, Pegington M, Harvie MN, et al. Young adulthood body mass index, adult weight gain and breast cancer risk: the PROCAS Study (United Kingdom). Br J Cancer. 2020;122(10):1552–61. https://doi.org/10.1038/s41416-020-0807-9 .
doi: 10.1038/s41416-020-0807-9 pubmed: 32203222 pmcid: 7217761
Rosner B, Eliassen AH, Toriola AT, et al. Weight and weight changes in early adulthood and later breast cancer risk. Int J Cancer. 2017;140(9):2003–14. https://doi.org/10.1002/ijc.30627 .
doi: 10.1002/ijc.30627 pubmed: 28133728 pmcid: 5798241
Allen JD, Savadatti S, Levy AG. The transition from breast cancer “patient” to “survivor.” Psychooncology. 2009;18(1):71–8. https://doi.org/10.1002/pon.1380 .
doi: 10.1002/pon.1380 pubmed: 18613299
Hamajima N, Hirose K, Tajima K, et al. Alcohol, tobacco and breast cancer–collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer. 2002;87(11):1234–45. https://doi.org/10.1038/sj.bjc.6600596 .
doi: 10.1038/sj.bjc.6600596 pubmed: 12439712
Hodis HN, Sarrel PM. Menopausal hormone therapy and breast cancer: what is the evidence from randomized trials? Climacteric. 2018;21(6):521–8. https://doi.org/10.1080/13697137.2018.1514008 .
doi: 10.1080/13697137.2018.1514008 pubmed: 30296850 pmcid: 6386596
Santen RJ, Heitjan DF, Gompel A, et al. Underlying breast cancer risk and menopausal hormone therapy. J Clin Endocrinol Metab. 2020. https://doi.org/10.1210/clinem/dgaa073 .
doi: 10.1210/clinem/dgaa073 pubmed: 32882039 pmcid: 7060760
Narod SA. Hormone replacement therapy and the risk of breast cancer. Nat Rev Clin Oncol. 2011;8(11):669–76. https://doi.org/10.1038/nrclinonc.2011.110 .
doi: 10.1038/nrclinonc.2011.110 pubmed: 21808267
American College of O, Gynecologists’ Committee on Gynecologic P, Farrell R. ACOG Committee Opinion No. 659: The use of vaginal estrogen in women with a history of estrogen-dependent breast cancer. Obstet Gynecol. 2016;127(3):e93-6. https://doi.org/10.1097/AOG.0000000000001351 .
doi: 10.1097/AOG.0000000000001351
Valero MG, Zabor EC, Park A, et al. The Tyrer-Cuzick model inaccurately predicts invasive breast cancer risk in women with LCIS. Ann Surg Oncol. 2020;27(3):736–40. https://doi.org/10.1245/s10434-019-07814-w .
doi: 10.1245/s10434-019-07814-w pubmed: 31559544
Ozanne EM, Howe R, Mallinson D, Esserman L, Van’t Veer LJ, Kaplan CP. Evaluation of National Comprehensive Cancer Network guideline-based Tool for Risk Assessment for breast and ovarian Cancer (N-TRAC): a patient-reported survey for genetic high-risk assessment for breast and ovarian cancers in women. J Genet Couns. 2019;28(3):507–15. https://doi.org/10.1002/jgc4.1051 .
doi: 10.1002/jgc4.1051 pubmed: 30663827
Ozanne EM, Drohan B, Bosinoff P, et al. Which risk model to use? Clinical implications of the ACS MRI screening guidelines. Cancer Epidemiol Biomark Prev. 2013;22(1):146–9. https://doi.org/10.1158/1055-9965.EPI-12-0570 .
doi: 10.1158/1055-9965.EPI-12-0570
Mazzola E, Blackford A, Parmigiani G, Biswas S. Recent enhancements to the genetic risk prediction model BRCAPRO. Cancer Inform. 2015;14(Suppl 2):147–57. https://doi.org/10.4137/CIN.S17292 .
doi: 10.4137/CIN.S17292 pubmed: 25983549 pmcid: 4428390
Amir E, Freedman OC, Seruga B, Evans DG. Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst. 2010;102(10):680–91. https://doi.org/10.1093/jnci/djq088 .
doi: 10.1093/jnci/djq088 pubmed: 20427433
Wang X, Huang Y, Li L, Dai H, Song F, Chen K. Assessment of performance of the Gail model for predicting breast cancer risk: a systematic review and meta-analysis with trial sequential analysis. Breast Cancer Res. 2018;20(1):18. https://doi.org/10.1186/s13058-018-0947-5 .
doi: 10.1186/s13058-018-0947-5 pubmed: 29534738 pmcid: 5850919
Niehoff NM, White AJ, Sandler DP. Physical activity and breast cancer: focusing on high-risk subgroups and putting recommendations in context. Cancer Res. 2020;80(1):23–4. https://doi.org/10.1158/0008-5472.CAN-19-3350 .
doi: 10.1158/0008-5472.CAN-19-3350 pubmed: 31900281 pmcid: 7456185
Tice JA, Bissell MCS, Miglioretti DL, et al. Validation of the breast cancer surveillance consortium model of breast cancer risk. Breast Cancer Res Treat. 2019;175(2):519–23. https://doi.org/10.1007/s10549-019-05167-2 .
doi: 10.1007/s10549-019-05167-2 pubmed: 30796654 pmcid: 7138025
Monticciolo DL, Newell MS, Moy L, Niell B, Monsees B, Sickles EA. Breast cancer screening in women at higher-than-average risk: recommendations from the ACR. J Am Coll Radiol. 2018;15(3 Pt A):408–14. https://doi.org/10.1016/j.jacr.2017.11.034 .
doi: 10.1016/j.jacr.2017.11.034 pubmed: 29371086
Meads C, Ahmed I, Riley RD. A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance. Breast Cancer Res Treat. 2012;132(2):365–77. https://doi.org/10.1007/s10549-011-1818-2 .
doi: 10.1007/s10549-011-1818-2 pubmed: 22037780
Vecchio MM. Breast cancer screening in the high-risk population. Asia Pac J Oncol Nurs. 2018;5(1):46–50. https://doi.org/10.4103/apjon.apjon_53_17 .
doi: 10.4103/apjon.apjon_53_17 pubmed: 29379834 pmcid: 5763440
Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57(2):75–89. https://doi.org/10.3322/canjclin.57.2.75 .
doi: 10.3322/canjclin.57.2.75 pubmed: 17392385
Warner E, Plewes DB, Hill KA, et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA. 2004;292(11):1317–25. https://doi.org/10.1001/jama.292.11.1317 .
doi: 10.1001/jama.292.11.1317 pubmed: 15367553
Berg WA, Zhang Z, Lehrer D, et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA. 2012;307(13):1394–404. https://doi.org/10.1001/jama.2012.388 .
doi: 10.1001/jama.2012.388 pubmed: 22474203 pmcid: 3891886
Kriege M, Brekelmans CT, Boetes C, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med. 2004;351(5):427–37. https://doi.org/10.1056/NEJMoa031759 .
doi: 10.1056/NEJMoa031759 pubmed: 15282350
Tosteson ANA. An abbreviated MRI protocol for breast cancer screening in women with dense breasts: promising results, but further evaluation required prior to widespread implementation. JAMA. 2020;323(8):719–21. https://doi.org/10.1001/jama.2020.0357 .
doi: 10.1001/jama.2020.0357 pubmed: 32096832
Saulsberry L, Pace LE, Keating NL. The impact of breast density notification laws on supplemental breast imaging and breast biopsy. J Gen Intern Med. 2019;34(8):1441–51. https://doi.org/10.1007/s11606-019-05026-2 .
doi: 10.1007/s11606-019-05026-2 pubmed: 31144277 pmcid: 6667574
Geisel J, Raghu M, Hooley R. The role of ultrasound in breast cancer screening: the case for and against ultrasound. Semin Ultrasound CT MR. 2018;39(1):25–34. https://doi.org/10.1053/j.sult.2017.09.006 .
doi: 10.1053/j.sult.2017.09.006 pubmed: 29317037
Zuley ML, Bandos AI, Abrams GS, et al. Contrast enhanced digital mammography (CEDM) helps to safely reduce benign breast biopsies for low to moderately suspicious soft tissue lesions. Acad Radiol. 2020;27(7):969–76. https://doi.org/10.1016/j.acra.2019.07.020 .
doi: 10.1016/j.acra.2019.07.020 pubmed: 31495761
Sumkin JH, Berg WA, Carter GJ, et al. Diagnostic performance of MRI, molecular breast imaging, and contrast-enhanced mammography in women with newly diagnosed breast cancer. Radiology. 2019;293(3):531–40. https://doi.org/10.1148/radiol.2019190887 .
doi: 10.1148/radiol.2019190887 pubmed: 31660801
Sorin V, Yagil Y, Yosepovich A, et al. Contrast-enhanced spectral mammography in women with intermediate breast cancer risk and dense breasts. AJR Am J Roentgenol. 2018;211(5):W267–74. https://doi.org/10.2214/AJR.17.19355 .
doi: 10.2214/AJR.17.19355 pubmed: 30240292
Rhodes DJ, Hruska CB, Conners AL, et al. Journal club: molecular breast imaging at reduced radiation dose for supplemental screening in mammographically dense breasts. AJR Am J Roentgenol. 2015;204(2):241–51. https://doi.org/10.2214/ajr.14.13357 .
doi: 10.2214/ajr.14.13357 pubmed: 25615744 pmcid: 4423604
Evans A, Trimboli RM, Athanasiou A, et al. Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Imaging. 2018;9(4):449–61. https://doi.org/10.1007/s13244-018-0636-z .
doi: 10.1007/s13244-018-0636-z pubmed: 30094592 pmcid: 6108964
Moyer VA, US Preventive Services Task Force. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: US Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;160(4):271–81. https://doi.org/10.7326/M13-2747 .
doi: 10.7326/M13-2747 pubmed: 24366376
Visvanathan K, Hurley P, Bantug E, et al. Use of pharmacologic interventions for breast cancer risk reduction: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2013;31(23):2942–62. https://doi.org/10.1200/JCO.2013.49.3122 .
doi: 10.1200/JCO.2013.49.3122 pubmed: 23835710
Henry NL, Chan HP, Dantzer J, et al. Aromatase inhibitor-induced modulation of breast density: clinical and genetic effects. Br J Cancer. 2013;109(9):2331–9. https://doi.org/10.1038/bjc.2013.587 .
doi: 10.1038/bjc.2013.587 pubmed: 24084768 pmcid: 3817329
Liu JH. Selective estrogen receptor modulators (SERMS): keys to understanding their function. Menopause. 2020. https://doi.org/10.1097/GME.0000000000001585 .
doi: 10.1097/GME.0000000000001585 pubmed: 33323763 pmcid: 7709925
Guerrieri-Gonzaga A, Sestak I, Lazzeroni M, et al. Benefit of low-dose tamoxifen in a large observational cohort of high risk ER positive breast DCIS. Int J Cancer. 2016;139(9):2127–34. https://doi.org/10.1002/ijc.30254 .
doi: 10.1002/ijc.30254 pubmed: 27381855
McIntosh JG, Minshall J, Saya S, et al. Benefits and harms of selective oestrogen receptor modulators (SERMs) to reduce breast cancer risk: a cross-sectional study of methods to communicate risk in primary care. Br J Gen Pract. 2019;69(689):e836–42. https://doi.org/10.3399/bjgp19X706841 .
doi: 10.3399/bjgp19X706841 pubmed: 31636127 pmcid: 6805163
Cuzick J, Sestak I, Forbes JF, et al. Use of anastrozole for breast cancer prevention (IBIS-II): long-term results of a randomised controlled trial. Lancet. 2020;395(10218):117–22. https://doi.org/10.1016/S0140-6736(19)32955-1 .
doi: 10.1016/S0140-6736(19)32955-1 pubmed: 31839281 pmcid: 6961114
Sini V, Botticelli A, Lunardi G, Gori S, Marchetti P. Pharmacogenetics and aromatase inhibitor induced side effects in breast cancer patients. Pharmacogenomics. 2017;18(8):821–30. https://doi.org/10.2217/pgs-2017-0006 .
doi: 10.2217/pgs-2017-0006 pubmed: 28592202
Tseng OL, Spinelli JJ, Gotay CC, Ho WY, McBride ML, Dawes MG. Aromatase inhibitors are associated with a higher fracture risk than tamoxifen: a systematic review and meta-analysis. Ther Adv Musculoskelet Dis. 2018;10(4):71–90. https://doi.org/10.1177/1759720X18759291 .
doi: 10.1177/1759720X18759291 pubmed: 29619093 pmcid: 5871065
Narod SA, Brunet JS, Ghadirian P, et al. Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study Hereditary Breast Cancer Clinical Study Group. Lancet. 2000;356(9245):1876–81. https://doi.org/10.1016/s0140-6736(00)03258-x .
doi: 10.1016/s0140-6736(00)03258-x pubmed: 11130383
Cuzick J, Sestak I, Thorat MA. Impact of preventive therapy on the risk of breast cancer among women with benign breast disease. Breast. 2015;24(Suppl 2):S51–5. https://doi.org/10.1016/j.breast.2015.07.013 .
doi: 10.1016/j.breast.2015.07.013 pubmed: 26255741
Li X, You R, Wang X, et al. Effectiveness of prophylactic surgeries in BRCA1 or BRCA2 mutation carriers: a meta-analysis and systematic review. Clin Cancer Res. 2016;22(15):3971–81. https://doi.org/10.1158/1078-0432.CCR-15-1465 .
doi: 10.1158/1078-0432.CCR-15-1465 pubmed: 26979395
De Felice F, Marchetti C, Musella A, et al. Bilateral risk-reduction mastectomy in BRCA1 and BRCA2 mutation carriers: a meta-analysis. Ann Surg Oncol. 2015;22(9):2876–80. https://doi.org/10.1245/s10434-015-4532-1 .
doi: 10.1245/s10434-015-4532-1 pubmed: 25808098
Gamble C, Havrilesky LJ, Myers ER, et al. Cost effectiveness of risk-reducing mastectomy versus surveillance in BRCA mutation carriers with a history of ovarian cancer. Ann Surg Oncol. 2017;24(11):3116–23. https://doi.org/10.1245/s10434-017-5995-z .
doi: 10.1245/s10434-017-5995-z pubmed: 28699130 pmcid: 5990891
Co M, Chiu R, Chiu TM, et al. Nipple-sparing mastectomy and its application on BRCA gene mutation carrier. Clin Breast Cancer. 2017;17(8):581–4. https://doi.org/10.1016/j.clbc.2017.02.001 .
doi: 10.1016/j.clbc.2017.02.001 pubmed: 28428099
Bellanger M, Barry K, Rana J, Regnaux JP. Cost-effectiveness of lifestyle-related interventions for the primary prevention of breast cancer: a rapid review. Front Med (Lausanne). 2019;6:325. https://doi.org/10.3389/fmed.2019.00325 .
doi: 10.3389/fmed.2019.00325

Auteurs

Suneela Vegunta (S)

Division of Women's Health Internal Medicine, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA. vegunta.suneela@mayo.edu.

Asha A Bhatt (AA)

Department of Radiology, Mayo Clinic, Rochester, MN, USA.

Sadia A Choudhery (SA)

Department of Radiology, Mayo Clinic, Rochester, MN, USA.

Sandhya Pruthi (S)

Division of General Internal Medicine, Breast Cancer Clinic, Mayo Clinic, Rochester, MN, USA.

Aparna S Kaur (AS)

Division of General Internal Medicine, Breast Cancer Clinic, Mayo Clinic, Rochester, MN, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH