Definitive screening accelerates Taxol biosynthetic pathway optimization and scale up in Saccharomyces cerevisiae cell factories.

Saccharomyces cerevisiae bioprocess optimization definitive screening design high-throughput microbioreactor taxol

Journal

Biotechnology journal
ISSN: 1860-7314
Titre abrégé: Biotechnol J
Pays: Germany
ID NLM: 101265833

Informations de publication

Date de publication:
Jan 2022
Historique:
revised: 08 10 2021
received: 04 08 2021
accepted: 11 10 2021
pubmed: 15 10 2021
medline: 19 1 2022
entrez: 14 10 2021
Statut: ppublish

Résumé

Recent technological advancements in synthetic and systems biology have enabled the construction of microbial cell factories expressing diverse heterologous pathways in unprecedentedly short time scales. However, the translation of such laboratory scale breakthroughs to industrial bioprocesses remains a major bottleneck. In this study, an accelerated bioprocess development approach was employed to optimize the biosynthetic pathway of the blockbuster chemotherapy drug, Taxol. Statistical design of experiments approaches were coupled with an industrially relevant high-throughput microbioreactor system to optimize production of key Taxol intermediates, Taxadien-5α-ol and Taxadien-5α-yl-acetate, in engineered yeast cell factories. The optimal factor combination was determined via data driven statistical modelling and validated in 1 L bioreactors leading to a 2.1-fold improvement in taxane production compared to a typical defined media. Elucidation and mitigation of nutrient limitation enhanced product titers a further two-fold and titers of the critical Taxol precursors, Taxadien-5α-ol and Taxadien-5α-yl-acetate were improved to 34 and 11 mg L The results of this study highlight the benefits of a holistic design of experiments guided approach to expedite early stage bioprocess development.

Sections du résumé

BACKGROUND BACKGROUND
Recent technological advancements in synthetic and systems biology have enabled the construction of microbial cell factories expressing diverse heterologous pathways in unprecedentedly short time scales. However, the translation of such laboratory scale breakthroughs to industrial bioprocesses remains a major bottleneck.
METHODS AND MAJOR RESULTS UNASSIGNED
In this study, an accelerated bioprocess development approach was employed to optimize the biosynthetic pathway of the blockbuster chemotherapy drug, Taxol. Statistical design of experiments approaches were coupled with an industrially relevant high-throughput microbioreactor system to optimize production of key Taxol intermediates, Taxadien-5α-ol and Taxadien-5α-yl-acetate, in engineered yeast cell factories. The optimal factor combination was determined via data driven statistical modelling and validated in 1 L bioreactors leading to a 2.1-fold improvement in taxane production compared to a typical defined media. Elucidation and mitigation of nutrient limitation enhanced product titers a further two-fold and titers of the critical Taxol precursors, Taxadien-5α-ol and Taxadien-5α-yl-acetate were improved to 34 and 11 mg L
CONCLUSIONS CONCLUSIONS
The results of this study highlight the benefits of a holistic design of experiments guided approach to expedite early stage bioprocess development.

Identifiants

pubmed: 34649302
doi: 10.1002/biot.202100414
doi:

Substances chimiques

Paclitaxel P88XT4IS4D

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2100414

Subventions

Organisme : the Engineering and Physical Sciences Research Council
ID : EP/R513209/1
Organisme : the Royal Society
ID : RSG∖R1∖180345
Organisme : The British Council
ID : 527429894
Organisme : the Novo Nordisk Foundation within the frame of the Fermentation Based Biomanufacturing initiative
ID : NNF17SA0031362

Informations de copyright

© 2021 The Authors. Biotechnology Journal published by Wiley-VCH GmbH.

Références

Malcı, K., Walls, L. E., & Rios-Solis, L. (2020). Multiplex genome engineering methods for yeast cell factory development . In Frontiers in bioengineering and biotechnology (Vol. 8, p. 1264). https://www.frontiersin.org/article/10.3389/fbioe.2020.589468
Chubukov, V., Mukhopadhyay, A., Petzold, C. J., Keasling, J. D., & Martín, H. G. (2016). Synthetic and systems biology for microbial production of commodity chemicals. Npj Systems Biology and Applications, 2(1), 16009. https://doi.org/10.1038/npjsba.2016.9.
Wilk, P., Halim, M., & Rios-Solis, L. (2019). Recent advances and impacts of microtiter plate-based fermentations in synthetic biology and bioprocess development. In E. M. T. El-Mansi, J. Nielsen, D. Mousdale, & R. P. Carlson (Eds.), Fermentation microbiology and biotechnology, fourth edition (Fourth, p. 14). CRC Press. https://doi.org/10.1201/9780429506987.
Gilman, J., Walls, L., Bandiera, L., & Menolascina, F. (2021). Statistical design of experiments for synthetic biology. ACS Synthetic Biology, 10(1), 1-18. https://doi.org/10.1021/acssynbio.0c00385.
Fellermann, H., Shirt-Ediss, B., Kozyra, J., Linsley, M., Lendrem, D., Isaacs, J., & Howard, T. (2019). Design of experiments and the virtual PCR simulator: An online game for pharmaceutical scientists and biotechnologists. Pharmaceutical Statistics, 18(4), 402-406. https://doi.org/10.1002/pst.1932.
Campbell, K., Xia, J., & Nielsen, J. (2017). The impact of systems biology on bioprocessing. Trends in Biotechnology, 35(12), 1156-1168. https://doi.org/10.1016/j.tibtech.2017.08.011.
Hemmerich, J., Noack, S., Wiechert, W., & Oldiges, M. (2018). Microbioreactor systems for accelerated bioprocess development. Biotechnology Journal, 13(4), 1700141. https://doi.org/10.1002/biot.201700141.
Fink, M., Cserjan-Puschmann, M., Reinisch, D., & Striedner, G. (2021). High-throughput microbioreactor provides a capable tool for early stage bioprocess development. Sci. Rep., 11(1), 2056. https://doi.org/10.1038/s41598-021-81633-6.
Hsu, W.-T., Aulakh, R. P. S., Traul, D. L., & Yuk, I. H. (2012). Advanced microscale bioreactor system: A representative scale-down model for bench-top bioreactors. Cytotechnology, 64(6), 667-678. https://doi.org/10.1007/s10616-012-9446-1.
Funke, M., Diederichs, S., Kensy, F., Müller, C., & Büchs, J. (2009). The baffled microtiter plate: Increased oxygen transfer and improved online monitoring in small scale fermentations. Biotechnology and Bioengineering, 103(6), 1118-1128. https://doi.org/10.1002/bit.22341.
Jacobsen, I. H., Ledesma-Amaro, R., & Martinez, J. L. (2020). Recombinant β-carotene production by yarrowia lipolytica - Assessing the potential of micro-scale fermentation analysis in cell factory design and bioreaction optimization . In Frontiers in bioengineering and biotechnology (Vol. 8, p. 29). https://www.frontiersin.org/article/10.3389/fbioe.2020.00029
Back, A., Rossignol, T., Krier, F., Nicaud, J.-M., & Dhulster, P. (2016). High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production. Microbial Cell Factories, 15(1), 147. https://doi.org/10.1186/s12934-016-0546-z.
Huang, K., Huang, Q., Wildung, M. R., Croteau, R., & Scott, A. I. (1998). Overproduction, in Escherichia coli, of soluble Taxadiene synthase, a key enzyme in the Taxol biosynthetic pathway. Protein Expression and Purification, 13(1), 90-96. https://doi.org/10.1006/prep.1998.0870.
Walker, K., Ketchum, R. E. B., Hezari, M., Gatfield, D., Goleniowski, M., Barthol, A., & Croteau, R. (1999). Partial purification and characterization of acetyl coenzyme A: Taxa-4(20),11(12)-dien-5α-olO-acetyl transferase that catalyzes the first acylation step of taxol biosynthesis. Archives of Biochemistry and Biophysics, 364(2), 273-279. https://doi.org/10.1006/abbi.1999.1125.
McElroy, C., & Jennewein, S. (2018). Taxol® biosynthesis and production: From forests to fermenters. In W. Schwab, B. M. Lange, & M. Wüst (Eds.), Biotechnology of natural products (pp. 145-185). Springer International Publishing. https://doi.org/10.1007/978-3-319-67903-7_7.
Edgar, S., Zhou, K., Qiao, K., King, J. R., Simpson, J. H., & Stephanopoulos, G. (2016). Mechanistic insights into taxadiene epoxidation by taxadiene-5î±-hydroxylase. ACS Chemical Biology, 11(2), 460-469. https://doi.org/10.1021/acschembio.5b00767.
Walls, L. E., Malcı, K., Nowrouzi, B., Li, R. A., d’Espaux, L., Wong, J., Dennis, J. A., Semião, A. J. C., Wallace, S., Martinez, J. L., Keasling, J. D., & Rios-Solis, L. (2021). Optimizing the biosynthesis of oxygenated and acetylated Taxol precursors in Saccharomyces cerevisiae using advanced bioprocessing strategies. Biotechnology and Bioengineering, 118(1), 279. https://doi.org/10.1002/bit.27569.
Nowrouzi, B., Li, R. A., Walls, L. E., d'Espaux, L., Malcı, K., Lungang, L., Borrego, N. J., Escalera, A., Morones-Ramirez, J. R., Keasling, J., & Rios-Solis, L. (2020). Enhanced production of taxadiene in Saccharomyces cerevisiae. Microbial Cell Factories, 19, 200. https://doi.org/10.1186/s12934-020-01458-2.
Lee, S. Y., & Kim, H. U. (2015). Systems strategies for developing industrial microbial strains. Nature Biotechnology, 33(10), 1061-1072. https://doi.org/10.1038/nbt.3365.
Rangel, A. E. T., Gómez Ramírez, J. M., & González Barrios, A. F. (2020). From industrial by-products to value-added compounds: The design of efficient microbial cell factories by coupling systems metabolic engineering and bioprocesses. Biofuels, Bioproducts and Biorefining, 14(6), 1228-1238. https://doi.org/10.1002/bbb.2127.
Zhang, J., Reddy, J., Buckland, B., & Greasham, R. (2003). Toward consistent and productive complex media for industrial fermentations: Studies on yeast extract for a recombinant yeast fermentation process. Biotechnology and Bioengineering, 82(6), 640-652. https://doi.org/10.1002/bit.10608.
Reider Apel, A., Sachs, D., Tong, G. J., d’Espaux, L., Wehrs, M., Garber, M., Nnadi, O., Mukhopadhyay, A., Keasling, J. D., Hillson, N. J., Li, R. A., & Zhuang, W. (2016). A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Research, 45(1), 496-508. https://doi.org/10.1093/nar/gkw1023.
Hefner, J., Rubenstein, S. M., Ketchum, R. E. B., Gibson, D. M., Williams, R. M., & Croteau, R. (1996). Cytochrome P450-catalyzed hydroxylation of taxa-4(5),11(12)-diene to taxa-4(20),11(12)-dien-5a-o1: The first oxygenation step in taxol biosynthesis(5),11(12)-diene to taxa-4(20),11(12)-dien-5a-o1: the first oxygenation step in taxol biosynthesis. Chemistry & Biology, 3(6), 479-489. https://doi.org/10.1016/S1074-5521(96)90096-4.
Roberts, T. M., Kaltenbach, H.-M., & Rudolf, F. (2020). Development and optimisation of a defined high cell density yeast medium. Yeast, 37(5-6), 336-347. https://doi.org/10.1002/yea.3464.
Jones, B., & Nachtsheim, C. J. (2011). A class of three-level designs for definitive screening in the presence of second-order effects. Journal of Quality Technology, 43(1), 1-15. https://doi.org/10.1080/00224065.2011.11917841.
Biggs, B. W., Rouck, J. E., Kambalyal, A., Arnold, W., Lim, C. G., Mey, M. De, Neil-johnson, M. O., Starks, C. M., Das, A., & Ajikumar, P. K. (2016). Orthogonal assays clarify the oxidative biochemistry of Taxol P450 CYP725A4. ACS Chemical Biology, 11, 1445-1451. https://doi.org/10.1021/acschembio.5b00968.
Beopoulos, A., Nicaud, J.-M., & Gaillardin, C. (2011). An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Applied Microbiology and Biotechnology, 90(4), 1193-1206. https://doi.org/10.1007/s00253-011-3212-8.
Braunwald, T., Schwemmlein, L., Graeff-Hönninger, S., French, W. T., Hernandez, R., Holmes, W. E., & Claupein, W. (2013). Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Applied Microbiology and Biotechnology, 97(14), 6581-6588. https://doi.org/10.1007/s00253-013-5005-8.
Spanova, M., Czabany, T., Zellnig, G., Leitner, E., Hapala, I., & Daum, G. (2010). Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast saccharomyces cerevisiae. Journal of Biological Chemistry, 285(9), 6127-6133. https://doi.org/10.1074/jbc.M109.074229.
Olson, M. L., Johnson, J., Carswell, W. F., Reyes, L. H., Senger, R. S., & Kao, K. C. (2016). Characterization of an evolved carotenoids hyper-producer of Saccharomyces cerevisiae through bioreactor parameter optimization and Raman spectroscopy. Journal of Industrial Microbiology and Biotechnology., 43(10), 1355-1363. https://doi.org/10.1007/s10295-016-1808-9.
Ma, T., Shi, B., Ye, Z., Li, X., Liu, M., Chen, Y., Xia, J., Nielsen, J., Deng, Z., & Liu, T. (2019). Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic Engineering, 52, 134-142. https://doi.org/10.1016/j.ymben.2018.11.009.
Walker, M. G., & Stewart, G. G. (2016). Saccharomyces cerevisiae in the production of fermented beverages. In Beverages (Vol. 2, Issue 4). https://doi.org/10.3390/beverages2040030.
Thomas, K. C., Hynes, S. H., & Ingledew, W. M. (2002). Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Applied and Environmental Microbiology, 68(4), 1616-1623. https://doi.org/10.1128/aem.68.4.1616-1623.2002.

Auteurs

Laura E Walls (LE)

Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK.
Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, UK.
Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens Lyngby, Denmark.

José L Martinez (JL)

Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens Lyngby, Denmark.

E Antonio Del Rio Chanona (EA)

Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, UK.

Leonardo Rios-Solis (L)

Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK.
Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, UK.

Articles similaires

Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Metabolic Networks and Pathways Saccharomyces cerevisiae Computational Biology Synthetic Biology Computer Simulation

Classifications MeSH