Adaptation of lenvatinib treatment in patients with hepatocellular carcinoma and portal vein tumor thrombosis.
Adult
Aged
Aged, 80 and over
Antineoplastic Agents
/ administration & dosage
Carcinoma, Hepatocellular
/ complications
Female
Humans
Liver
/ blood supply
Liver Neoplasms
/ complications
Male
Middle Aged
Phenylurea Compounds
/ administration & dosage
Portal Vein
/ drug effects
Prognosis
Quinolines
/ administration & dosage
Venous Thrombosis
/ pathology
Hepatocellular carcinoma
Lenvatinib
Liver circulation
Liver cirrhosis
Prognosis
Sonazoid
Journal
Cancer chemotherapy and pharmacology
ISSN: 1432-0843
Titre abrégé: Cancer Chemother Pharmacol
Pays: Germany
ID NLM: 7806519
Informations de publication
Date de publication:
01 2022
01 2022
Historique:
received:
19
05
2021
accepted:
27
09
2021
pubmed:
11
10
2021
medline:
23
2
2022
entrez:
10
10
2021
Statut:
ppublish
Résumé
The aim of this study was to clarify the adaptation of lenvatinib treatment in patients with hepatocellular carcinoma (HCC) and portal vein tumor thrombosis (PVTT). Fifty-three patients with HCC were treated with lenvatinib. Before and after treatment blood sampling, patients were examined by computed tomography and ultrasonography. In patients with portal trunk invasion (Vp4), the analysis focused on the degree of occlusion due to the tumor in the portal trunk. In patients without major PVTT {ie, invasion of the primary branch of the portal vein [Vp3] or Vp4}, portal blood flow volume was measured by Doppler analysis; however, Doppler analysis is difficult to perform in patients with major PVTT, so the time from administration of the contrast agent to when it reached the primary branch of the portal vein (portal vein arrival time) was evaluated with the contrast agent Sonazoid. Patients with Vp4 had a significantly worse prognosis than patients with Vp3 and a significant increase in Child-Pugh score at 2 months. Patients with major PVTT had a poor prognosis if the degree of occlusion of the portal trunk was 70% or more. In patients without major PVTT, portal blood flow was significantly decreased after administration of lenvatinib; and in patients with major PVTT, the hepatic artery and portal vein arrival times were significantly increased. Lenvatinib treatment should be avoided in patients with Vp4 with a high degree of portal trunk occlusion because of concerns about decreased portal blood flow.
Identifiants
pubmed: 34628536
doi: 10.1007/s00280-021-04359-2
pii: 10.1007/s00280-021-04359-2
doi:
Substances chimiques
Antineoplastic Agents
0
Phenylurea Compounds
0
Quinolines
0
lenvatinib
EE083865G2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11-20Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Tohyama O, Matsui J, Kodama K et al (2014) Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res 2014:638747
doi: 10.1155/2014/638747
Matsuki M, Hoshi T, Yamamoto Y et al (2018) Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Med 7(6):2641–2653
doi: 10.1002/cam4.1517
Kudo M, Finn RS, Qin S et al (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391(10126):1163–1173
doi: 10.1016/S0140-6736(18)30207-1
Kudo M (2018) Extremely high objective response rate of lenvatinib: its clinical relevance and changing the treatment paradigm in hepatocellular carcinoma. Liver Cancer 7(3):215–224
doi: 10.1159/000492533
Kudo M (2018) Lenvatinib may drastically change the treatment landscape of hepatocellular carcinoma. Liver Cancer 7(1):1–19
doi: 10.1159/000487148
Hiraoka A, Kumada T, Kariyama K et al (2019) Clinical features of lenvatinib for unresectable hepatocellular carcinoma in real-world conditions: multicenter analysis. Cancer Med 8(1):137–146
doi: 10.1002/cam4.1909
Qadan M, Kothary N, Sangro B, Palta M (2020) The treatment of hepatocellular carcinoma with portal vein tumor thrombosis. Am Soc Clin Oncol Educ Book 40:1–8
pubmed: 32213090
Kudo M, Izumi N, Kokudo N et al (2011) Management of hepatocellular carcinoma in japan: consensus-based clinical practice guidelines proposed by the japan society of hepatology (JSH) 2010 updated version. Dig Dis 29(3):339–364. https://doi.org/10.1159/000327577
doi: 10.1159/000327577
pubmed: 21829027
Kudo M, Izumi N, Kubo S et al (2020) Report of the 20th nationwide follow-up survey of primary liver cancer in japan. Hepatol Res 50(1):15–46. https://doi.org/10.1111/hepr.13438
doi: 10.1111/hepr.13438
pubmed: 31655492
pmcid: 7003938
Mahringer-Kunz A, Steinle V, Duber C et al (2019) Extent of portal vein tumour thrombosis in patients with hepatocellular carcinoma: the more, the worse? Liver Int 39(2):324–331. https://doi.org/10.1111/liv.13988
doi: 10.1111/liv.13988
pubmed: 30318826
Llovet JM, Bustamante J, Castells A et al (1999) Natural history of untreated nonsurgical hepatocellular carcinoma: rationale for the design and evaluation of therapeutic trials. Hepatology 29(1):62–67
doi: 10.1002/hep.510290145
Villa E, Moles A, Ferretti I et al (2000) Natural history of inoperable hepatocellular carcinoma: estrogen receptors’ status in the tumor is the strongest prognostic factor for survival. Hepatology 32(2):233–238
doi: 10.1053/jhep.2000.9603
European Association for the Study of the Liver (2018) EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 69(1):182–236 (Electronic address: easloffice@easloffice.eu)
doi: 10.1016/j.jhep.2018.03.019
Heimbach JK, Kulik LM, Finn RS et al (2018) AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 67(1):358–380
doi: 10.1002/hep.29086
Kokudo N, Takemura N, Hasegawa K et al (2019) Clinical practice guidelines for hepatocellular carcinoma: the japan society of hepatology 2017 (4th JSH-HCC guidelines) 2019 update. Hepatol Res 49(10):1109–1113. https://doi.org/10.1111/hepr.13411
doi: 10.1111/hepr.13411
pubmed: 31336394
Nagai H, Mukozu T, Ogino YU et al (2015) Sorafenib and hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma with portal vein tumor thrombus. Anticancer Res 35(4):2269–2277
pubmed: 25862889
Wakui N, Nagai H, Matsukiyo Y et al (2018) Effect of hepatic inflammation in chronic hepatitis C infection on fibrosis assessment by arrival time parametric imaging. Ultrasound Q 34(3):128–132
doi: 10.1097/RUQ.0000000000000355
Wakui N, Takayama R, Kanekawa T et al (2012) Usefulness of arrival time parametric imaging in evaluating the degree of liver disease progression in chronic hepatitis C infection. J Ultrasound Med 31(3):373–382
doi: 10.7863/jum.2012.31.3.373
Wakui N, Nagai H, Ogino Y et al (2018) Hepatic arterialization can predict the development of collateral veins in patients with HCV-related liver disease. J Ultrasound 21(4):301–308
doi: 10.1007/s40477-018-0323-4
Lencioni R, Llovet JM (2010) Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 30(1):52–60
doi: 10.1055/s-0030-1247132
Llovet JM, Di Bisceglie AM, Bruix J et al (2008) Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 100(10):698–711
doi: 10.1093/jnci/djn134
Gregory J, Dioguardi Burgio M, Corrias G, Vilgrain V, Ronot M (2020) Evaluation of liver tumour response by imaging. JHEP Rep 2(3):100100. https://doi.org/10.1016/j.jhepr.2020.100100
doi: 10.1016/j.jhepr.2020.100100
pubmed: 32514496
pmcid: 7267412
Ueshima K, Nishida N, Hagiwara S et al (2019) Impact of baseline ALBI grade on the outcomes of hepatocellular carcinoma patients treated with lenvatinib: a multicenter study. Cancers (Basel). https://doi.org/10.3390/cancers11070952
doi: 10.3390/cancers11070952
Hiraoka A, Kumada T, Atsukawa M et al (2019) Prognostic factor of lenvatinib for unresectable hepatocellular carcinoma in real-world conditions-multicenter analysis. Cancer Med 8(8):3719–3728
doi: 10.1002/cam4.2241
Hiraoka A, Kumada T, Fukunishi S et al (2020) Post-progression treatment eligibility of unresectable hepatocellular carcinoma patients treated with lenvatinib. Liver Cancer 9(1):73–83
doi: 10.1159/000503031
Yao H, Wang Y (2020) Relationship between hemodynamic parameters and portal venous pressure in cirrhosis patients with portal hypertension. Open Life Sci 15(1):981–987. https://doi.org/10.1515/biol-2020-0101
doi: 10.1515/biol-2020-0101
pubmed: 33817284
pmcid: 7874537
Hui R, Li Z, Liu Z, Liu X, Deng H (2021) The clinical value of color Doppler ultrasonography in measuring the hemodynamics of liver cirrhosis patients' portal and splenic veins. Am J Transl Res 13(3):1692–1700. https://www.ncbi.nlm.nih.gov/pubmed/33841691 . Accessed 7 July 2021
Valla DC (2020) Recent developments in the field of vascular liver diseases. Liver Int 40(S1):142–148. https://doi.org/10.1111/liv.14348
doi: 10.1111/liv.14348
pubmed: 32077611
Endo K, Oikawa T, Kakisaka K, Tamura A, Ehara S, Takikawa Y (2018) The impact of portal vein thrombosis on the prognosis and liver function of nonmalignant cirrhotic patients. Scand J Gastroenterol 53(10–11):1340–1346. https://doi.org/10.1080/00365521.2018.1503327
doi: 10.1080/00365521.2018.1503327
pubmed: 30257110
Scheiner B, Stammet P, Pokorny S et al (2018) Anticoagulation in non-malignant portal vein thrombosis is safe and improves hepatic function. Wien Klin Wochenschr. 130(13):446–455. https://www.ncbi.nlm.nih.gov/pubmed/29916054 . https://doi.org/10.1007/s00508-018-1351-y . Accessed 20 July 2021
Watanabe T, Koyama N (2019) Preclinical study for antitumor mechanism of lenvatinib and clinical studies for hepatocellular carcinoma. Nihon Yakurigaku Zasshi 153(5):242–248
doi: 10.1254/fpj.153.242
Fernandez M, Mejias M, Garcia-Pras E, Mendez R, Garcia-Pagan JC, Bosch J (2007) Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet-derived growth factor blockade in rats. Hepatology 46(4):1208–1217
doi: 10.1002/hep.21785
Autiero M, Luttun A, Tjwa M, Carmeliet P (2003) Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 1(7):1356–1370
doi: 10.1046/j.1538-7836.2003.00263.x
Van Steenkiste C, Geerts A, Vanheule E et al (2009) Role of placental growth factor in mesenteric neoangiogenesis in a mouse model of portal hypertension. Gastroenterology 137(6):2112–2116
doi: 10.1053/j.gastro.2009.08.068
Van Steenkiste C, Ribera J, Geerts A et al (2011) Inhibition of placental growth factor activity reduces the severity of fibrosis, inflammation, and portal hypertension in cirrhotic mice. Hepatology 53(5):1629–1640
doi: 10.1002/hep.24238
Fernandez M, Vizzutti F, Garcia-Pagan JC, Rodes J, Bosch J (2004) Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology 126(3):886–894
doi: 10.1053/j.gastro.2003.12.012
Kleber G, Steudel N, Behrmann C et al (1999) Hepatic arterial flow volume and reserve in patients with cirrhosis: use of intra-arterial Doppler and adenosine infusion. Gastroenterology 116(4):906–914
doi: 10.1016/S0016-5085(99)70074-0
Sasaki K, McVey JC, Firl DJ et al (2019) Sufficient hepatic artery flow compensates for poor portal vein flow after liver transplantation in patients with portal vein thrombosis. Clin Transpl 33(11):e13723. https://doi.org/10.1111/ctr.13723
doi: 10.1111/ctr.13723
Chung R, Tyebally S, Chen D et al (2020) Hypertensive cardiotoxicity in cancer treatment-systematic analysis of adjunct, conventional chemotherapy, and novel therapies-epidemiology, incidence, and pathophysiology. J Clin Med. https://doi.org/10.3390/jcm9103346 (E3346 [pii])
doi: 10.3390/jcm9103346
pubmed: 33271908
pmcid: 7761382