Coupling of GABA Metabolism to Mitochondrial Glucose Phosphorylation.
Bioenergetics
Brain
GABA shunt
Hexokinase
Mitochondria
Synaptosome
Journal
Neurochemical research
ISSN: 1573-6903
Titre abrégé: Neurochem Res
Pays: United States
ID NLM: 7613461
Informations de publication
Date de publication:
Feb 2022
Feb 2022
Historique:
received:
05
04
2021
accepted:
04
10
2021
revised:
15
09
2021
pubmed:
9
10
2021
medline:
1
4
2022
entrez:
8
10
2021
Statut:
ppublish
Résumé
Glucose and oxygen (O
Identifiants
pubmed: 34623563
doi: 10.1007/s11064-021-03463-2
pii: 10.1007/s11064-021-03463-2
doi:
Substances chimiques
gamma-Aminobutyric Acid
56-12-2
Hydrogen Peroxide
BBX060AN9V
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
470-480Subventions
Organisme : FAPERJ
ID : E-26/203.004/2017
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Roberts E, Frankel S (1950) Gamma-aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 187(1):55–63
pubmed: 14794689
Curtis DR, Phillis JW, Watkins JC (1959) The depression of spinal neurones by gamma-amino-n-butyric acid and beta-alanine. J Physiol 146(1):185–203
pubmed: 13655226
pmcid: 1356900
Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19(12):500–505
pubmed: 9871412
Martin DL, Rimvall K (1993) Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem 60(2):395–407
pubmed: 8419527
pmcid: 8419527
Saito K et al (1974) Immunohistochemical localization of glutamate decarboxylase in rat cerebellum. Proc Natl Acad Sci U S A 71(2):269–273
pubmed: 4131274
pmcid: 387984
Walls AB et al (2011) Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine. J Cereb Blood Flow Metab 31(2):494–503
pubmed: 20664610
Rowley NM et al (2012) Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int 61(4):546–558
pubmed: 22365921
Balazs R et al (1970) The operation of the gamma-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochem J 116(3):445–461
pubmed: 5435689
pmcid: 1185383
Patel AJ, Balazs R, Richter D (1970) Contribution of the GABA bypath to glucose oxidation, and the development of compartmentation in the brain. Nature 226(5251):1160–1161
pubmed: 5447041
Myles WS, Wood JD (1968) The effect of hyperbaric oxygen on the GABA shunt pathway in brain homogenates. Can J Physiol Pharmacol 46(4):669–671
pubmed: 5668213
Walsh JM, Clark JB (1976) Studies on the control of 4-aminobutyrate metabolism in “synaptosomal” and free rat brain mitochondria. Biochem J 160(2):147–157
pubmed: 188415
pmcid: 1164216
Ravasz D et al (2017) Catabolism of GABA, succinic semialdehyde or gamma-hydroxybutyrate through the GABA shunt impair mitochondrial substrate-level phosphorylation. Neurochem Int 109:41–53
pubmed: 28300620
Salminen A et al (2016) Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer’s disease. Neurochem Int 92:13–24
pubmed: 26617286
Parviz M et al (2014) Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies. J Pediatr Epilepsy 3(4):217–227
pubmed: 25485164
pmcid: 4256671
Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation I. Kinetics of oxygen utilization. J Biol Chem 217(1):383–93
pubmed: 13271402
Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148
pubmed: 13771349
Vafai SB, Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491(7424):374–383
pubmed: 23151580
Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 1604(2):77–94
pubmed: 12765765
Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1):15–18
pubmed: 9369223
Havel PJ (2001) Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med (Maywood) 226(11):963–977
Rutter J, Winge DR, Schiffman JD (2010) Succinate dehydrogenase - assembly, regulation and role in human disease. Mitochondrion 10(4):393–401
pubmed: 20226277
pmcid: 20226277
Mills E, O’Neill LA (2014) Succinate: a metabolic signal in inflammation. Trends Cell Biol 24(5):313–320
pubmed: 24361092
Benit P et al (2014) Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling. Biochim Biophys Acta 1837(8):1330–1337
pubmed: 24699309
Tretter L, Patocs A, Chinopoulos C (2016) Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta 1857(8):1086–1101
pubmed: 26971832
Dienel, G.A. 2012 Fueling and imaging brain activation. ASN Neuro 4(5)
Schousboe A (2019) Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission. Neurosci Lett 689:11–13
pubmed: 29378296
Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206(Pt 12):2049–2057
pubmed: 12756287
Santiago AP et al (2008) Reactive oxygen species generation is modulated by mitochondrial kinases: correlation with mitochondrial antioxidant peroxidases in rat tissues. Biochimie 90(10):1566–1577
pubmed: 18634844
da Silva WS et al (2004) Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J Biol Chem 279(38):39846–39855
Camacho-Pereira J et al (2009) Reactive oxygen species production by potato tuber mitochondria is modulated by mitochondrially bound hexokinase activity. Plant Physiol 149(2):1099–1110
pubmed: 19109413
pmcid: 2633851
Rodrigues-Ferreira C, da Silva AP, Galina A (2012) Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase. J Bioenerg Biomembr 44(1):39–49
pubmed: 22322891
Cavalcanti-de-Albuquerque JP et al (2018) Mitochondria-bound hexokinase (mt-HK) activity differ in cortical and hypothalamic synaptosomes: differential role of mt-HK in H2O2 depuration. Mol Neurobiol 55(7):5889–5900
pubmed: 29119535
Hendry SH et al (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 7(5):1503–1519
pubmed: 3033170
pmcid: 6568832
Buzsaki G, Kaila K, Raichle M (2007) Inhibition and brain work. Neuron 56(5):771–783
pubmed: 18054855
pmcid: 2266612
Vincent SR, Hokfelt T, Wu JY (1982) GABA neuron systems in hypothalamus and the pituitary gland. Immunohistochemical demonstration using antibodies against glutamate decarboxylase. Neuroendocrinology 34(2):117–125
pubmed: 6280090
Decavel C, Van den Pol AN (1990) GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol 302(4):1019–1037
pubmed: 2081813
Decavel C, van den Pol AN (1992) Converging GABA- and glutamate-immunoreactive axons make synaptic contact with identified hypothalamic neurosecretory neurons. J Comp Neurol 316(1):104–116
pubmed: 1349310
Dunkley PR, Jarvie PE, Robinson PJ (2008) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 3(11):1718–1728
pubmed: 18927557
Sims NR, Anderson MF (2008) Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat Protoc 3(7):1228–1239
pubmed: 18600228
Muller AP et al (2013) Insulin prevents mitochondrial generation of H(2)O(2) in rat brain. Exp Neurol 247:66–72
pubmed: 23499835
Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41(10):1837–1845
pubmed: 19467914
Kurebayashi N, Kodama T, Ogawa Y (1980) P1, P5-Di(adenosine-5’)pentaphosphate(Ap5A) as an inhibitor of adenylate kinase in studies of fragmented sarcoplasmic reticulum from bullfrog skeletal muscle. J Biochem 88(3):871–876
pubmed: 6252207
Cavalcanti-de-Albuquerque JP et al (2014) Role of estrogen on skeletal muscle mitochondrial function in ovariectomized rats: a time course study in different fiber types. J Appl Physiol 116(7):779–789
pubmed: 24458744
de Souza Ferreira E et al (2019) Mitochondria-coupled glucose phosphorylation develops after birth to modulate H2 O2 release and calcium handling in rat brain. J Neurochem 149(5):624–640
Johnson MK (1960) The intracellular distribution of glycolytic and other enzymes in rat-brain homogenates and mitochondrial preparations. Biochem J 77:610–618
pubmed: 13790316
pmcid: 1205083
Carbone S, Lavie CJ, Arena R (2017) Obesity and Heart Failure: focus on the obesity paradox. Mayo Clin Proc 92(2):266–279
pubmed: 28109619
Beattie DS, Sloan HR, Basford RE (1963) Brain mitochondria Ii. The relationship of brain mitochondria to glycolysis. J Cell Biol 19:309–316
pubmed: 14086757
pmcid: 2106873
Wilson JE (1968) Brain hexokinase. A proposed relation between soluble-particulate distribution and activity in vivo. J Biol Chem 243(13):3640–3647
pubmed: 5658541
Crane RK, Sols A (1953) The association of hexokinase with particulate fractions of brain and other tissue homogenates. J Biol Chem 203(1):273–292
pubmed: 13069512
BeltrandelRio H, Wilson JE (1991) Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP. Arch Biochem Biophys 286(1):183–194
pubmed: 1897945
BeltrandelRio H, Wilson JE (1992) Coordinated regulation of cerebral glycolytic and oxidative metabolism, mediated by mitochondrially bound hexokinase dependent on intramitochondrially generated ATP. Arch Biochem Biophys 296(2):667–677
pubmed: 1632653
BeltrandelRio H, Wilson JE (1992) Interaction of mitochondrially bound rat brain hexokinase with intramitochondrial compartments of ATP generated by oxidative phosphorylation and creatine kinase. Arch Biochem Biophys 299(1):116–124
pubmed: 1444444
de Cerqueira Cesar M, Wilson JE (1995) Application of a double isotopic labeling method to a study of the interaction of mitochondrially bound rat brain hexokinase with intramitochondrial compartments of ATP generated by oxidative phosphorylation. Arch Biochem Biophys 324(1):9–14
pubmed: 7503565
de Cerqueira Cesar M, Wilson JE (2002) Functional characteristics of hexokinase bound to the type a and type B sites of bovine brain mitochondria. Arch Biochem Biophys 397(1):106–112
pubmed: 11747316
Cesar Mde C, Wilson JE (1998) Further studies on the coupling of mitochondrially bound hexokinase to intramitochondrially compartmented ATP, generated by oxidative phosphorylation. Arch Biochem Biophys 350(1):109–117
pubmed: 9466827
Okur V et al (2019) De novo variants in HK1 associated with neurodevelopmental abnormalities and visual impairment. Eur J Hum Genet 27(7):1081–1089
pubmed: 30778173
pmcid: 6777464
Asadi Shahmirzadi A et al (2020) Alpha-Ketoglutarate, an Endogenous Metabolite, Extends Lifespan and Compresses Morbidity in Aging Mice. Cell Metab 32(3):447–456
pubmed: 32877690
pmcid: 8508957
Zdzisinska B, Zurek A, Kandefer-Szerszen M (2017) Alpha-ketoglutarate as a molecule with pleiotropic activity: well-known and novel possibilities of therapeutic use. Arch Immunol Ther Exp (Warsz) 65(1):21–36
Brugnara L et al (2012) Metabolomics approach for analyzing the effects of exercise in subjects with type 1 diabetes mellitus. PLoS One 7(7):e40600
pubmed: 22792382
pmcid: 3394718
Otto C, Yovkova V, Barth G (2011) Overproduction and secretion of alpha-ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol 92(4):689–695
pubmed: 21964641
Michaeli S et al (2011) A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism. Plant J 67(3):485–498
pubmed: 21501262
Brand MD, Chappell JB (1974) Permeability of mitochondria from rat brain and rat liver to GABA. J Neurochem 22(1):47–51
pubmed: 4150473
Lai JC, Cooper AJ (1986) Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem 47(5):1376–1386
pubmed: 3760866
Brown MR, Sullivan PG, Geddes JW (2006) Synaptic mitochondria are more susceptible to Ca2+overload than nonsynaptic mitochondria. J Biol Chem 281(17):11658–11668
pubmed: 16517608
Krishnan H, Baquer NZ, Singh R (1981) Changes in gamma-aminobutyric acid-shunt enzymes in regions of rat brain with ketamine anaesthesia. Neuropharmacology 20(6):567–574
pubmed: 7242874
Gabellec MM et al (1980) Regional distributions of gamma-aminobutyric acid (GABA), glutamate decarboxylase (GAD), and gamma-aminobutyrate transaminase (GABA-T) in the central nervous brains of C57/BR, C3H/He, and F1 hybrid mice. Neurochem Res 5(3):309–317
pubmed: 7374885
Buerstatte CR et al (2000) Brain regional development of the activity of alpha-ketoglutarate dehydrogenase complex in the rat. Brain Res Dev Brain Res 125(1–2):139–145
pubmed: 11154769
Gronborg M et al (2010) Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci 30(1):2–12
pubmed: 20053882
pmcid: 6632534
Boyken J et al (2013) Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. Neuron 78(2):285–297
pubmed: 23622064
Lassek M, Weingarten J, Volknandt W (2015) The synaptic proteome. Cell Tissue Res 359(1):255–265
pubmed: 25038742
Lassek M, Weingarten J, Volknandt W (2014) The Proteome of the Murine Presynaptic Active Zone. Proteomes 2(2):243–257
pubmed: 28250380
pmcid: 5302740
Volknandt W, Karas M (2012) Proteomic analysis of the presynaptic active zone. Exp Brain Res 217(3–4):449–461
pubmed: 22354101
Xu Y et al (2021) Proteomic insights into synaptic signaling in the brain: the past, present and future. Mol Brain 14(1):37
pubmed: 33596935
pmcid: 7888154
Pedroso AP et al (2019) A proteomics-metabolomics approach indicates changes in hypothalamic glutamate-GABA metabolism of adult female rats submitted to intrauterine growth restriction. Eur J Nutr 58(8):3059–3068
pubmed: 30406389
Che-Othman MH et al (2020) Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. New Phytol 225(3):1166–1180
pubmed: 30688365
Kratz SV (2009) Sensory integration intervention: historical concepts, treatment strategies and clinical experiences in three patients with succinic semialdehyde dehydrogenase (SSADH) deficiency. J Inherit Metab Dis 32(3):353–360
pubmed: 19381864
Kim KJ et al (2011) Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. Antioxid Redox Signal 15(3):691–718
pubmed: 20973619
pmcid: 3125545
Koenig MK et al (2017) Phenotype of GABA-transaminase deficiency. Neurology 88(20):1919–1924
pubmed: 28411234
pmcid: 5444310
Hegde AU et al (2019) GABA Transaminase Deficiency With Survival Into Adulthood. J Child Neurol 34(4):216–220
pubmed: 30644311
pmcid: 7292229
Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne) 4:102