Coupling of GABA Metabolism to Mitochondrial Glucose Phosphorylation.


Journal

Neurochemical research
ISSN: 1573-6903
Titre abrégé: Neurochem Res
Pays: United States
ID NLM: 7613461

Informations de publication

Date de publication:
Feb 2022
Historique:
received: 05 04 2021
accepted: 04 10 2021
revised: 15 09 2021
pubmed: 9 10 2021
medline: 1 4 2022
entrez: 8 10 2021
Statut: ppublish

Résumé

Glucose and oxygen (O

Identifiants

pubmed: 34623563
doi: 10.1007/s11064-021-03463-2
pii: 10.1007/s11064-021-03463-2
doi:

Substances chimiques

gamma-Aminobutyric Acid 56-12-2
Hydrogen Peroxide BBX060AN9V
Glucose IY9XDZ35W2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

470-480

Subventions

Organisme : FAPERJ
ID : E-26/203.004/2017

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Roberts E, Frankel S (1950) Gamma-aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 187(1):55–63
pubmed: 14794689
Curtis DR, Phillis JW, Watkins JC (1959) The depression of spinal neurones by gamma-amino-n-butyric acid and beta-alanine. J Physiol 146(1):185–203
pubmed: 13655226 pmcid: 1356900
Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19(12):500–505
pubmed: 9871412
Martin DL, Rimvall K (1993) Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem 60(2):395–407
pubmed: 8419527 pmcid: 8419527
Saito K et al (1974) Immunohistochemical localization of glutamate decarboxylase in rat cerebellum. Proc Natl Acad Sci U S A 71(2):269–273
pubmed: 4131274 pmcid: 387984
Walls AB et al (2011) Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine. J Cereb Blood Flow Metab 31(2):494–503
pubmed: 20664610
Rowley NM et al (2012) Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int 61(4):546–558
pubmed: 22365921
Balazs R et al (1970) The operation of the gamma-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochem J 116(3):445–461
pubmed: 5435689 pmcid: 1185383
Patel AJ, Balazs R, Richter D (1970) Contribution of the GABA bypath to glucose oxidation, and the development of compartmentation in the brain. Nature 226(5251):1160–1161
pubmed: 5447041
Myles WS, Wood JD (1968) The effect of hyperbaric oxygen on the GABA shunt pathway in brain homogenates. Can J Physiol Pharmacol 46(4):669–671
pubmed: 5668213
Walsh JM, Clark JB (1976) Studies on the control of 4-aminobutyrate metabolism in “synaptosomal” and free rat brain mitochondria. Biochem J 160(2):147–157
pubmed: 188415 pmcid: 1164216
Ravasz D et al (2017) Catabolism of GABA, succinic semialdehyde or gamma-hydroxybutyrate through the GABA shunt impair mitochondrial substrate-level phosphorylation. Neurochem Int 109:41–53
pubmed: 28300620
Salminen A et al (2016) Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer’s disease. Neurochem Int 92:13–24
pubmed: 26617286
Parviz M et al (2014) Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies. J Pediatr Epilepsy 3(4):217–227
pubmed: 25485164 pmcid: 4256671
Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation I. Kinetics of oxygen utilization. J Biol Chem 217(1):383–93
pubmed: 13271402
Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148
pubmed: 13771349
Vafai SB, Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491(7424):374–383
pubmed: 23151580
Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 1604(2):77–94
pubmed: 12765765
Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1):15–18
pubmed: 9369223
Havel PJ (2001) Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med (Maywood) 226(11):963–977
Rutter J, Winge DR, Schiffman JD (2010) Succinate dehydrogenase - assembly, regulation and role in human disease. Mitochondrion 10(4):393–401
pubmed: 20226277 pmcid: 20226277
Mills E, O’Neill LA (2014) Succinate: a metabolic signal in inflammation. Trends Cell Biol 24(5):313–320
pubmed: 24361092
Benit P et al (2014) Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling. Biochim Biophys Acta 1837(8):1330–1337
pubmed: 24699309
Tretter L, Patocs A, Chinopoulos C (2016) Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta 1857(8):1086–1101
pubmed: 26971832
Dienel, G.A. 2012 Fueling and imaging brain activation. ASN Neuro 4(5)
Schousboe A (2019) Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission. Neurosci Lett 689:11–13
pubmed: 29378296
Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206(Pt 12):2049–2057
pubmed: 12756287
Santiago AP et al (2008) Reactive oxygen species generation is modulated by mitochondrial kinases: correlation with mitochondrial antioxidant peroxidases in rat tissues. Biochimie 90(10):1566–1577
pubmed: 18634844
da Silva WS et al (2004) Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J Biol Chem 279(38):39846–39855
Camacho-Pereira J et al (2009) Reactive oxygen species production by potato tuber mitochondria is modulated by mitochondrially bound hexokinase activity. Plant Physiol 149(2):1099–1110
pubmed: 19109413 pmcid: 2633851
Rodrigues-Ferreira C, da Silva AP, Galina A (2012) Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase. J Bioenerg Biomembr 44(1):39–49
pubmed: 22322891
Cavalcanti-de-Albuquerque JP et al (2018) Mitochondria-bound hexokinase (mt-HK) activity differ in cortical and hypothalamic synaptosomes: differential role of mt-HK in H2O2 depuration. Mol Neurobiol 55(7):5889–5900
pubmed: 29119535
Hendry SH et al (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 7(5):1503–1519
pubmed: 3033170 pmcid: 6568832
Buzsaki G, Kaila K, Raichle M (2007) Inhibition and brain work. Neuron 56(5):771–783
pubmed: 18054855 pmcid: 2266612
Vincent SR, Hokfelt T, Wu JY (1982) GABA neuron systems in hypothalamus and the pituitary gland. Immunohistochemical demonstration using antibodies against glutamate decarboxylase. Neuroendocrinology 34(2):117–125
pubmed: 6280090
Decavel C, Van den Pol AN (1990) GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol 302(4):1019–1037
pubmed: 2081813
Decavel C, van den Pol AN (1992) Converging GABA- and glutamate-immunoreactive axons make synaptic contact with identified hypothalamic neurosecretory neurons. J Comp Neurol 316(1):104–116
pubmed: 1349310
Dunkley PR, Jarvie PE, Robinson PJ (2008) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 3(11):1718–1728
pubmed: 18927557
Sims NR, Anderson MF (2008) Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat Protoc 3(7):1228–1239
pubmed: 18600228
Muller AP et al (2013) Insulin prevents mitochondrial generation of H(2)O(2) in rat brain. Exp Neurol 247:66–72
pubmed: 23499835
Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41(10):1837–1845
pubmed: 19467914
Kurebayashi N, Kodama T, Ogawa Y (1980) P1, P5-Di(adenosine-5’)pentaphosphate(Ap5A) as an inhibitor of adenylate kinase in studies of fragmented sarcoplasmic reticulum from bullfrog skeletal muscle. J Biochem 88(3):871–876
pubmed: 6252207
Cavalcanti-de-Albuquerque JP et al (2014) Role of estrogen on skeletal muscle mitochondrial function in ovariectomized rats: a time course study in different fiber types. J Appl Physiol 116(7):779–789
pubmed: 24458744
de Souza Ferreira E et al (2019) Mitochondria-coupled glucose phosphorylation develops after birth to modulate H2 O2 release and calcium handling in rat brain. J Neurochem 149(5):624–640
Johnson MK (1960) The intracellular distribution of glycolytic and other enzymes in rat-brain homogenates and mitochondrial preparations. Biochem J 77:610–618
pubmed: 13790316 pmcid: 1205083
Carbone S, Lavie CJ, Arena R (2017) Obesity and Heart Failure: focus on the obesity paradox. Mayo Clin Proc 92(2):266–279
pubmed: 28109619
Beattie DS, Sloan HR, Basford RE (1963) Brain mitochondria Ii. The relationship of brain mitochondria to glycolysis. J Cell Biol 19:309–316
pubmed: 14086757 pmcid: 2106873
Wilson JE (1968) Brain hexokinase. A proposed relation between soluble-particulate distribution and activity in vivo. J Biol Chem 243(13):3640–3647
pubmed: 5658541
Crane RK, Sols A (1953) The association of hexokinase with particulate fractions of brain and other tissue homogenates. J Biol Chem 203(1):273–292
pubmed: 13069512
BeltrandelRio H, Wilson JE (1991) Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP. Arch Biochem Biophys 286(1):183–194
pubmed: 1897945
BeltrandelRio H, Wilson JE (1992) Coordinated regulation of cerebral glycolytic and oxidative metabolism, mediated by mitochondrially bound hexokinase dependent on intramitochondrially generated ATP. Arch Biochem Biophys 296(2):667–677
pubmed: 1632653
BeltrandelRio H, Wilson JE (1992) Interaction of mitochondrially bound rat brain hexokinase with intramitochondrial compartments of ATP generated by oxidative phosphorylation and creatine kinase. Arch Biochem Biophys 299(1):116–124
pubmed: 1444444
de Cerqueira Cesar M, Wilson JE (1995) Application of a double isotopic labeling method to a study of the interaction of mitochondrially bound rat brain hexokinase with intramitochondrial compartments of ATP generated by oxidative phosphorylation. Arch Biochem Biophys 324(1):9–14
pubmed: 7503565
de Cerqueira Cesar M, Wilson JE (2002) Functional characteristics of hexokinase bound to the type a and type B sites of bovine brain mitochondria. Arch Biochem Biophys 397(1):106–112
pubmed: 11747316
Cesar Mde C, Wilson JE (1998) Further studies on the coupling of mitochondrially bound hexokinase to intramitochondrially compartmented ATP, generated by oxidative phosphorylation. Arch Biochem Biophys 350(1):109–117
pubmed: 9466827
Okur V et al (2019) De novo variants in HK1 associated with neurodevelopmental abnormalities and visual impairment. Eur J Hum Genet 27(7):1081–1089
pubmed: 30778173 pmcid: 6777464
Asadi Shahmirzadi A et al (2020) Alpha-Ketoglutarate, an Endogenous Metabolite, Extends Lifespan and Compresses Morbidity in Aging Mice. Cell Metab 32(3):447–456
pubmed: 32877690 pmcid: 8508957
Zdzisinska B, Zurek A, Kandefer-Szerszen M (2017) Alpha-ketoglutarate as a molecule with pleiotropic activity: well-known and novel possibilities of therapeutic use. Arch Immunol Ther Exp (Warsz) 65(1):21–36
Brugnara L et al (2012) Metabolomics approach for analyzing the effects of exercise in subjects with type 1 diabetes mellitus. PLoS One 7(7):e40600
pubmed: 22792382 pmcid: 3394718
Otto C, Yovkova V, Barth G (2011) Overproduction and secretion of alpha-ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol 92(4):689–695
pubmed: 21964641
Michaeli S et al (2011) A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism. Plant J 67(3):485–498
pubmed: 21501262
Brand MD, Chappell JB (1974) Permeability of mitochondria from rat brain and rat liver to GABA. J Neurochem 22(1):47–51
pubmed: 4150473
Lai JC, Cooper AJ (1986) Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem 47(5):1376–1386
pubmed: 3760866
Brown MR, Sullivan PG, Geddes JW (2006) Synaptic mitochondria are more susceptible to Ca2+overload than nonsynaptic mitochondria. J Biol Chem 281(17):11658–11668
pubmed: 16517608
Krishnan H, Baquer NZ, Singh R (1981) Changes in gamma-aminobutyric acid-shunt enzymes in regions of rat brain with ketamine anaesthesia. Neuropharmacology 20(6):567–574
pubmed: 7242874
Gabellec MM et al (1980) Regional distributions of gamma-aminobutyric acid (GABA), glutamate decarboxylase (GAD), and gamma-aminobutyrate transaminase (GABA-T) in the central nervous brains of C57/BR, C3H/He, and F1 hybrid mice. Neurochem Res 5(3):309–317
pubmed: 7374885
Buerstatte CR et al (2000) Brain regional development of the activity of alpha-ketoglutarate dehydrogenase complex in the rat. Brain Res Dev Brain Res 125(1–2):139–145
pubmed: 11154769
Gronborg M et al (2010) Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci 30(1):2–12
pubmed: 20053882 pmcid: 6632534
Boyken J et al (2013) Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. Neuron 78(2):285–297
pubmed: 23622064
Lassek M, Weingarten J, Volknandt W (2015) The synaptic proteome. Cell Tissue Res 359(1):255–265
pubmed: 25038742
Lassek M, Weingarten J, Volknandt W (2014) The Proteome of the Murine Presynaptic Active Zone. Proteomes 2(2):243–257
pubmed: 28250380 pmcid: 5302740
Volknandt W, Karas M (2012) Proteomic analysis of the presynaptic active zone. Exp Brain Res 217(3–4):449–461
pubmed: 22354101
Xu Y et al (2021) Proteomic insights into synaptic signaling in the brain: the past, present and future. Mol Brain 14(1):37
pubmed: 33596935 pmcid: 7888154
Pedroso AP et al (2019) A proteomics-metabolomics approach indicates changes in hypothalamic glutamate-GABA metabolism of adult female rats submitted to intrauterine growth restriction. Eur J Nutr 58(8):3059–3068
pubmed: 30406389
Che-Othman MH et al (2020) Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. New Phytol 225(3):1166–1180
pubmed: 30688365
Kratz SV (2009) Sensory integration intervention: historical concepts, treatment strategies and clinical experiences in three patients with succinic semialdehyde dehydrogenase (SSADH) deficiency. J Inherit Metab Dis 32(3):353–360
pubmed: 19381864
Kim KJ et al (2011) Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. Antioxid Redox Signal 15(3):691–718
pubmed: 20973619 pmcid: 3125545
Koenig MK et al (2017) Phenotype of GABA-transaminase deficiency. Neurology 88(20):1919–1924
pubmed: 28411234 pmcid: 5444310
Hegde AU et al (2019) GABA Transaminase Deficiency With Survival Into Adulthood. J Child Neurol 34(4):216–220
pubmed: 30644311 pmcid: 7292229
Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne) 4:102

Auteurs

Joao Paulo Cavalcanti-de-Albuquerque (JP)

Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-170, Brazil. albuquerquejp@biof.ufrj.br.

Eduardo de-Souza-Ferreira (E)

Institute of Medical Biochemistry Leopoldo De Meis, Center of Health Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

Denise Pires de Carvalho (DP)

Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-170, Brazil.

Antonio Galina (A)

Institute of Medical Biochemistry Leopoldo De Meis, Center of Health Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. galina@bioqmed.ufrj.br.

Articles similaires

Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

A dual role for PSIP1/LEDGF in T cell acute lymphoblastic leukemia.

Lisa Demoen, Filip Matthijssens, Lindy Reunes et al.
1.00
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma Animals Mice Humans Cell Line, Tumor
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria

Classifications MeSH