The acid sphingomyelinase/ceramide system in COVID-19.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
01 2022
Historique:
received: 21 01 2021
accepted: 14 09 2021
revised: 10 08 2021
pubmed: 6 10 2021
medline: 5 4 2022
entrez: 5 10 2021
Statut: ppublish

Résumé

Acid sphingomyelinase (ASM) cleaves sphingomyelin into the highly lipophilic ceramide, which forms large gel-like rafts/platforms in the plasma membrane. We showed that SARS-CoV-2 uses these platforms for cell entry. Lowering the amount of ceramide or ceramide blockade due to inhibitors of ASM, genetic downregulation of ASM, anti-ceramide antibodies or degradation by neutral ceramidase protected against infection with SARS-CoV-2. The addition of ceramide restored infection with SARS-CoV-2. Many clinically approved medications functionally inhibit ASM and are called FIASMAs (functional inhibitors of acid sphingomyelinase). The FIASMA fluvoxamine showed beneficial effects on COVID-19 in a randomized prospective study and a prospective open-label real-world study. Retrospective and observational studies showed favorable effects of FIASMA antidepressants including fluoxetine, and the FIASMA hydroxyzine on the course of COVID-19. The ASM/ceramide system provides a framework for a better understanding of the infection of cells by SARS-CoV-2 and the clinical, antiviral, and anti-inflammatory effects of functional inhibitors of ASM. This framework also supports the development of new drugs or the repurposing of "old" drugs against COVID-19.

Identifiants

pubmed: 34608263
doi: 10.1038/s41380-021-01309-5
pii: 10.1038/s41380-021-01309-5
pmc: PMC8488928
doi:

Substances chimiques

Ceramides 0
Sphingomyelin Phosphodiesterase EC 3.1.4.12

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

307-314

Informations de copyright

© 2021. The Author(s).

Références

Hoertel N, Blachier M, Blanco C, Olfson M, Massetti M, Rico MS, et al. A stochastic agent-based model of the SARS-CoV-2 epidemic in France. Nat Med. 2020;26:1417–21.
pubmed: 32665655 doi: 10.1038/s41591-020-1001-6
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475–81.
pubmed: 32105632 pmcid: 7102538 doi: 10.1016/S2213-2600(20)30079-5
Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020;20:669–77.
pubmed: 32240634 pmcid: 7158570 doi: 10.1016/S1473-3099(20)30243-7
Verstergaard LS, Nielsen J, Richter L, Schmid D, Bustos N, Braeye T, et al. Excess all-cause mortality during the COVID-19 pandemic in Europe—preliminary pooled estimates from the EuroMOMO network, March to April 2020. Eurosurveillance. 2020;25:1–6.
Zhou Y, Yang Q, Chi J, Dong B, Lv W, Shen L, et al. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: a systematic review and meta-analysis. Int J Infect Dis. 2020;99:47–56.
pubmed: 32721533 pmcid: 7381888 doi: 10.1016/j.ijid.2020.07.029
Mojtabavi H, Saghazadeh A, Rezaei N. Interleukin-6 and severe COVID-19: a systematic review and meta-analysis. Eur Cytokine Netw. 2020;31:44–9.
pubmed: 32933891 pmcid: 7530350 doi: 10.1684/ecn.2020.0448
Mulchandani R, Lyngdoh T, Kakkar AK. Deciphering the COVID-19 cytokine storm: systematic review and meta-analysis. Eur J Clin Invest. 2020;51:e13429.
pubmed: 33058143
Dhar SK, K V, Damodar S, Gujar S, Das M. IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: results from meta-analysis and regression. Heliyon. 2021;7:e06155.
pubmed: 33553782 pmcid: 7846230 doi: 10.1016/j.heliyon.2021.e06155
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3.
pubmed: 32015507 pmcid: 7095418 doi: 10.1038/s41586-020-2012-7
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181:894–904.
pubmed: 32275855 pmcid: 7144619 doi: 10.1016/j.cell.2020.03.045
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581:215–20.
pubmed: 32225176 doi: 10.1038/s41586-020-2180-5
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–3.
pubmed: 32075877 pmcid: 7164637 doi: 10.1126/science.abb2507
Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–80.
pubmed: 32142651 pmcid: 7102627 doi: 10.1016/j.cell.2020.02.052
Grassmé H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, et al. CD95 signaling via ceramide-rich membrane rafts. J Biol Chem. 2001;276:20589–96.
pubmed: 11279185 doi: 10.1074/jbc.M101207200
Grassmé H, Jendrossek V, Riehle A, von Kürthy G, Berger J, Schwarz H, et al. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med. 2003;9:322–30.
pubmed: 12563314 doi: 10.1038/nm823
Schissel SL, Jiang X, Tweedie-Hardman J, Jeong T, Camejo EH, Najib J, et al. Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Biol Chem. 1998;273:2738–46.
pubmed: 9446580 doi: 10.1074/jbc.273.5.2738
Ferranti CS, Cheng J, Thompson C, Zhang J, Rotolo JA, Buddaseth S, et al. Fusion of lysosomes to plasma membrane initiates radiation-induced apoptosis. J Cell Biol. 2020;219:e201903176.
pubmed: 32328634 pmcid: 7147101 doi: 10.1083/jcb.201903176
Kolesnick RN, Goni FM, Alonso A. Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol. 2000;184:285–300.
pubmed: 10911359 doi: 10.1002/1097-4652(200009)184:3<285::AID-JCP2>3.0.CO;2-3
Nurminen TA, Holopainen JM, Zhao H, Kinnunen PKJ. Observation of topical catalysis by sphingomyelinase coupled to microspheres. J Am Chem Soc. 2002;124:12129–34.
pubmed: 12371852 doi: 10.1021/ja017807r
Grassmé H, Bock J, Kun J, Gulbins E. Clustering of CD40 ligand is required to form a functional contact with CD40. J Biol Chem. 2002;277:30289–99.
pubmed: 12011072 doi: 10.1074/jbc.M200494200
Grassmé H, Henry B, Ziobro R, Becker KA, Riethmüller J, Gardner A, et al. β1-Integrin accumulates in cystic fibrosis luminal airway epithelial membranes and decreases sphingosine, promoting bacterial infections. Cell Host Microbe. 2017;21:707–18.
pubmed: 28552668 pmcid: 5475347 doi: 10.1016/j.chom.2017.05.001
Cremesti A, Paris F, Grassmé H, Holler N, Tschopp J, Fuks Z, et al. Ceramide enables fas to cap and kill. J Biol Chem. 2001;276:23954–61.
pubmed: 11287428 doi: 10.1074/jbc.M101866200
Dumitru CA, Gulbins E. TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene. 2006;25:5612–25.
pubmed: 16636669 doi: 10.1038/sj.onc.1209568
Carpinteiro A, Becker KA, Japtok L, Hessler G, Keitsch S, Pozgajova M, et al. Regulation of hematogenous tumor metastasis by acid sphingomyelinase. EMBO Mol Med. 2015;7:714–34.
pubmed: 25851537 pmcid: 4459814 doi: 10.15252/emmm.201404571
Rotolo J, Stancevic B, Zhang J, Hua G, Fuller J, Yin X, et al. Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. J Clin Invest. 2012;122:1786–90.
pubmed: 22466649 pmcid: 3336980 doi: 10.1172/JCI59920
Charruyer A, Grazide S, Bezombes C, Müller S, Laurent G, Jaffrézou JP. UV-C light induces raft-associated acid sphingomyelinase and JNK activation and translocation independently on a nuclear signal. J Biol Chem. 2005;280:19196–204.
pubmed: 15769735 doi: 10.1074/jbc.M412867200
Lang PA, Schenck M, Nicolay JP, Becker JU, Kempe DS, Lupescu A, et al. Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med. 2007;13:164–70.
pubmed: 17259995 doi: 10.1038/nm1539
Grassmé H, Riehle A, Wilker B, Gulbins E. Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem. 2005;280:26256–62.
pubmed: 15888438 doi: 10.1074/jbc.M500835200
Gulbins E, Kolesnick R. Raft ceramide in molecular medicine. Oncogene. 2003;22:7070–7.
pubmed: 14557812 doi: 10.1038/sj.onc.1207146
Sakuragawa N, Sakuragawa M, Kuwabara T, Pentchev PG, Barranger JA, Brady RO. Niemann-Pick disease experimental model: sphingomyelinase reduction induced by AY-9944. Science. 1977;196:317–9.
pubmed: 66749 doi: 10.1126/science.66749
Albouz S, Hauw JJ, Berwald-Netter Y, Boutry JM, Bourdon R, Baumann N. Tricyclic antidepressants induce sphingomyelinase deficiency in fibroblast and neuroblastoma cell cultures. Biomedicine. 1981;35:218–20.
pubmed: 6285997
Yoshida Y, Arimoto K, Sato M, Sakuragawa N, Arima M, Satoyoshi E. Reduction of acid sphingomyelinase activity in human fibroblasts induced by AY-9944 and other cationic amphiphilic drugs. J Biochem. 1985;98:1669–79.
pubmed: 2419314 doi: 10.1093/oxfordjournals.jbchem.a135438
Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiltfang J, et al. Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model. J Med Chem. 2008;51:219–37.
pubmed: 18027916 doi: 10.1021/jm070524a
Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, et al. Identification of novel functional inhibitors of acid sphingomyelinase. PLoS ONE. 2011;6:e23852.
pubmed: 21909365 pmcid: 3166082 doi: 10.1371/journal.pone.0023852
Trapp S, Rosania GR, Horobin RW, Kornhuber J. Quantitative modeling of selective lysosomal targeting for drug design. Eur Biophys J. 2008;37:1317–28.
pubmed: 18504571 pmcid: 2711917 doi: 10.1007/s00249-008-0338-4
Kölzer M, Werth N, Sandhoff K. Interactions of acid sphingomyelinase and lipid bilayers in the presence of the tricyclic antidepressant desipramine. FEBS Lett. 2004;559:96–8.
pubmed: 14960314 doi: 10.1016/S0014-5793(04)00033-X
Hurwitz R, Ferlinz K, Sandhoff K. The tricyclic antidepressants desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe Seyler. 1994;375:447–50.
pubmed: 7945993 doi: 10.1515/bchm3.1994.375.7.447
Kornhuber J, Tripal P, Reichel M, Mühle C, Rhein C, Muehlbacher M, et al. Functional inhibitors of acid sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell Physiol Biochem. 2010;26:9–20.
pubmed: 20502000 doi: 10.1159/000315101
Riethmüller J, Anthonysamy J, Serra E, Schwab M, Döring G, Gulbins E. Therapeutic efficacy and safety of amitriptyline in patients with cystic fibrosis. Cell Physiol Biochem. 2009;24:65–72.
pubmed: 19590194 doi: 10.1159/000227814
Nährlich L, Mainz JG, Adams C, Engel C, Herrmann G, Icheva V, et al. Therapy of CF-patients with amitriptyline and placebo - a randomised, double-blind, placebo-controlled phase IIb multicenter, cohort-study. Cell Physiol Biochem. 2013;31:505–12.
pubmed: 23572075 doi: 10.1159/000350071
Cassano GB, Sjostrand SE, Hansson E. Distribution and fate of C
pubmed: 5892343 doi: 10.1007/BF00405356
Hilberg T, Mørland J, Bjørneboe A. Postmortem release of amitriptyline from the lungs; a mechanism of postmortem drug redistribution. Forensic Sci Int. 1994;64:47–55.
pubmed: 8157229 doi: 10.1016/0379-0738(94)90241-0
Bynum ND, Poklis JL, Gaffney-Kraft M, Garside D, Ropero-Miller JD. Postmortem distribution of tramadol, amitriptyline, and their metabolites in a suicidal overdose. J Anal Toxicol. 2005;29:401–6.
pubmed: 16105270 doi: 10.1093/jat/29.5.401
Johnson RD, Lewis RJ, Angier MK. The distribution of fluoxetine in human fluids and tissues. J Anal Toxicol. 2007;31:409–14.
pubmed: 17725889 doi: 10.1093/jat/31.7.409
Kornhuber J, Weigmann H, Rörich J, Wiltfang J, Bleich S, Meineke I, et al. Region specific distribution of levomepromazine in the human brain. J Neural Transm. 2006;113:387–97.
pubmed: 15997416 doi: 10.1007/s00702-005-0331-3
Miller ME, Adhikary S, Kolokoltsov AA, Davey RA. Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J Virol. 2012;86:7473–83.
pubmed: 22573858 pmcid: 3416309 doi: 10.1128/JVI.00136-12
Avota E, Gulbins E, Schneider-Schaulies S. DC-SIGN mediated sphingomyelinase-activation and ceramide generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog. 2011;7:e1001290.
pubmed: 21379338 pmcid: 3040670 doi: 10.1371/journal.ppat.1001290
Tani H, Shiokawa M, Kaname Y, Kambara H, Mori Y, Abe T, et al. Involvement of ceramide in the propagation of Japanese encephalitis virus. J Virol. 2010;84:2798–807.
pubmed: 20053738 pmcid: 2826033 doi: 10.1128/JVI.02499-09
Shivanna V, Kim Y, Chang KO. Ceramide formation mediated by acid sphingomyelinase facilitates endosomal escape of caliciviruses. Virology. 2015;483:218–28.
pubmed: 25985440 doi: 10.1016/j.virol.2015.04.022
Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassmé H, et al. Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis. 2001;6:431–9.
pubmed: 11595832 doi: 10.1023/A:1012445925628
Grassmé H, Gulbins E, Brenner B, Ferlinz K, Sandhoff K, Harzer K, et al. Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell. 1997;91:605–15.
pubmed: 9393854 doi: 10.1016/S0092-8674(00)80448-1
Hauck CR, Grassmé H, Bock J, Jendrossek V, Ferlinz K, Meyer TF, et al. Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett. 2000;478:260–6.
pubmed: 10930579 doi: 10.1016/S0014-5793(00)01851-2
Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41–58.
pubmed: 30310233 doi: 10.1038/nrd.2018.168
Santos J, Brierley S, Gandhi MJ, Cohen MA, Moschella PC, Declan ABL. Repurposing therapeutics for potential treatment of SARS-CoV-2: a review. Viruses. 2020;12:1–19.
doi: 10.3390/v12070705
Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. 2010;84:12658–64.
pubmed: 20926566 pmcid: 3004351 doi: 10.1128/JVI.01542-10
Carpinteiro A, Gripp B, Hoffmann M, Pohlmann S, Hoertel N, Edwards MJ, et al. Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells. J Biol Chem. 2021;296:1–12.
doi: 10.1016/j.jbc.2021.100701
Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwandner R, et al. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 1999;18:5252–63.
pubmed: 10508159 pmcid: 1171596 doi: 10.1093/emboj/18.19.5252
Carpinteiro A, Edwards MJ, Hoffmann M, Kochs G, Gripp B, Weigang S, et al. Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells. Cell Rep Med. 2020;1:100142.
pubmed: 33163980 pmcid: 7598530 doi: 10.1016/j.xcrm.2020.100142
Schloer S, Brunotte L, Goretzko J, Mecate-Zambrano A, Korthals N, Gerke V, et al. Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine. Emerg Microbes Infect. 2020;9:2245–55.
pubmed: 32975484 pmcid: 7594754 doi: 10.1080/22221751.2020.1829082
Dechaumes A, Nekoua MP, Belouzard S, Sane F, Engelmann I, Dubuisson J, et al. Fluoxetine can inhibit SARS-CoV-2 in vitro. Microorganisms. 2021;9:2–10.
doi: 10.3390/microorganisms9020339
Zimniak M, Kirschner L, Hilpert H, Geiger N, Danov O, Oberwinkler H, et al. The serotonin reuptake inhibitor fluoxetine inhibits SARS-CoV-2 in human lung tissue. Sci Rep. 2021;11:5890.
pubmed: 33723270 pmcid: 7961020 doi: 10.1038/s41598-021-85049-0
Fred SM, Kuivanen S, Ugurlu H, Casarotto PC, Levanov L, Saksela K, et al. Antidepressant and antipsychotic drugs reduce viral infection by SARS-CoV-2 and fluoxetine show antiviral activity against the novel variants in vitro. bioRxiv. 2021. https://doi.org/10.1101/2021.03.22.436379 .
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583:459–68.
pubmed: 32353859 pmcid: 7431030 doi: 10.1038/s41586-020-2286-9
Weston S, Coleman CM, Haupt R, Logue J, Matthews K, Li Y, et al. Broad anti-coronavirus activity of Food and Drug Administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. J Virol. 2020;94:1–13.
doi: 10.1128/JVI.01218-20
Jeon S, Ko M, Lee J, Choi I, Byun SY, Park S, et al. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob Agents Chemother. 2020;64:1–9.
doi: 10.1128/AAC.00819-20
Touret F, Gilles M, Barral K, Nougairede A, van HJ, Decroly E, et al. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci Rep. 2020;10:13093.
pubmed: 32753646 pmcid: 7403393 doi: 10.1038/s41598-020-70143-6
Mirabelli C, Wotring JW, Zhang CJ, McCarty SM, Fursmidt R, Pretto CD, et al. Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19. Proc Natl Acad Sci USA. 2021;118:1–12.
doi: 10.1073/pnas.2105815118
Yuan S, Yin X, Meng X, Chan JF, Ye ZW, Riva L, et al. Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature. 2021;593:418–23.
pubmed: 33727703 doi: 10.1038/s41586-021-03431-4
Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014;58:4885–93.
pubmed: 24841273 pmcid: 4136000 doi: 10.1128/AAC.03036-14
de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van NS, Bestebroer TM, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 2014;58:4875–84.
pubmed: 24841269 pmcid: 4136071 doi: 10.1128/AAC.03011-14
Liu Q, Xia S, Sun Z, Wang Q, Du L, Lu L, et al. Testing of Middle East respiratory syndrome coronavirus replication inhibitors for the ability to block viral entry. Antimicrob Agents Chemother. 2015;59:742–4.
pubmed: 25331705 doi: 10.1128/AAC.03977-14
Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen D, Hui KPY, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antivir Res. 2020;178:104786.
pubmed: 32251767 doi: 10.1016/j.antiviral.2020.104786
Ianevski A, Yao R, Fenstad MH, Biza S, Zusinaite E, Reisberg T, et al. Potential antiviral options against SARS-CoV-2 infection. Viruses. 2020;12:1–19.
doi: 10.3390/v12060642
Yang CW, Peng TT, Hsu HY, Lee YZ, Wu SH, Lin WH, et al. Repurposing old drugs as antiviral agents for coronaviruses. Biomed J. 2020;43:368–74.
pubmed: 32563698 pmcid: 7245249 doi: 10.1016/j.bj.2020.05.003
Ke YY, Peng TT, Yeh TK, Huang WZ, Chang SE, Wu SH, et al. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed J. 2020;43:355–62.
pubmed: 32426387 pmcid: 7227517 doi: 10.1016/j.bj.2020.05.001
Hoertel N, Sánchez-Rico M, Vernet R, Beeker N, Jannot AS, Neuraz A, et al. Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: results from an observational study. Mol Psychiatry. 2021. in press; https://doi.org/10.1038/s41380-021-01021-4 .
Lenze EJ, Mattar C, Zorumski CF, Stevens A, Schweiger J, Nicol GE, et al. Fluvoxamine vs placebo and clinical deterioration in outpatients with symptomatic COVID-19: a randomized clinical trial. JAMA. 2020;324:2292–2300.
pubmed: 33180097 pmcid: 7662481 doi: 10.1001/jama.2020.22760
Seftel D, Boulware DR. Prospective cohort of fluvoxamine for early treatment of Coronavirus Disease 19. Open Forum Infect Dis. 2021;8:ofab050.
pubmed: 33623808 pmcid: 7888564 doi: 10.1093/ofid/ofab050
Hoertel N, Sánchez M, Vernet R, Beeker N, Neuraz A, Blanco C, et al. Association between hydroxyzine use and reduced mortality in patients hospitalized for Coronavirus Disease 2019: results from a multicenter observational study. MedRxiv. 2020. https://doi.org/10.1101/2020.10.23.20154302 .
Hoertel N, Sánchez-Rico M, Gulbins E, Kornhuber J, Carpinteiro A, Lenze E, et al. Association between FIASMAs and reduced risk of intubation or death in individuals hospitalized for severe COVID-19: an observational multicenter study. Clin Pharmacol Ther. 2021. https://doi.org/10.1002/cpt.2317 .
Hoertel N, Sánchez-Rico M, Gulbins E, Kornhuber J, Carpinteiro A, Abellán M, et al. Association between psychotropic medications functionally inhibiting acid sphingomyelinase and reduced risk of intubation or death among individuals with mental disorder and severe COVID-19: an observational study. MedRxiv. 2021. https://doi.org/10.1101/2021.02.18.21251997 .
Darquennes G, Le Corre P, Le Moine O, Loas G. Association between Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) and reduced risk of death in COVID-19 patients: a retrospective cohort study. Pharmaceuticals. 2021;14:1–11.
doi: 10.3390/ph14030226
Marín-Corral J, Rodríguez-Morató J, Gomez-Gomez A, Pascual-Guardia S, Muñoz-Bermúdez R, Salazar-Degracia A, et al. Metabolic signatures associated with severity in hospitalized COVID-19 patients. Int J Mol Sci. 2021;22:4794.
pubmed: 33946479 pmcid: 8124482 doi: 10.3390/ijms22094794
Khodadoust, M. Ceramide levels and COVID-19 respiratory distress, a causal relationship. Research Square. 2021. https://doi.org/10.21203/rs.3.rs-443020/v3 .
FDA. Coronavirus (COVID-19) update: FDA revokes emergency use authorization for chloroquine and hydroxychloroquine. 2020. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-chloroquine-and .
Axfors C, Schmitt AM, Janiaud P, Van’t Hooft J, Abd-Elsalam S, Abdo EF, et al. Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19 from an international collaborative meta-analysis of randomized trials. Nat Commun. 2021;12:2349.
pubmed: 33859192 pmcid: 8050319 doi: 10.1038/s41467-021-22446-z
Homewood CA, Warhurst DC, Peters W, Baggaley VC. Lysosomes, pH and the anti-malarial action of chloroquine. Nature. 1972;235:50–52.
pubmed: 4550396 doi: 10.1038/235050a0
Jaffrézou JP, Chen G, Durán GE, Muller C, Bordier C, Laurent G, et al. Inhibition of lysosomal acid sphingomyelinase by agents which reverse multidrug resistance. Biochim Biophys Acta. 1995;1266:1–8.
pubmed: 7718613 doi: 10.1016/0167-4889(94)00219-5
Teichgräber V, Ulrich M, Endlich N, Riethmüller J, Wilker B, de Oliveira-Munding CC, et al. Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med. 2008;14:382–91.
pubmed: 18376404 doi: 10.1038/nm1748
Elojeimy S, Holman DH, Liu X, El-Zawahry A, Villani M, Cheng JC, et al. New insights on the use of desipramine as an inhibitor for acid ceramidase. FEBS Lett. 2006;580:4751–6.
pubmed: 16901483 doi: 10.1016/j.febslet.2006.07.071
Ng TW, Ooi EM, Watts GF, Chan DC, Weir JM, Meikle PJ, et al. Dose-dependent effects of rosuvastatin on the plasma sphingolipidome and phospholipidome in the metabolic syndrome. J Clin Endocrinol Metab. 2014;99:E2335–E2340.
pubmed: 25140396 doi: 10.1210/jc.2014-1665
Israel A, Schäffer AA, Cicurel A, Cheng K, Sinha S, Schiff E, et al. Identification of drugs associated with reduced severity of COVID-19—a case-control study in a large population. Elife. 2021;10:1–14.
doi: 10.7554/eLife.68165
Rosen DA, Seki SM, Fernandez-Castaneda A, Beiter RM, Eccles JD, Woodfolk JA, et al. Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci Transl Med. 2019;11:eaau5266.
pubmed: 30728287 pmcid: 6936250 doi: 10.1126/scitranslmed.aau5266
Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, et al. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science. 2020;370:1–25.
doi: 10.1126/science.abe9403
Cobos EJ, Entrena JM, Nieto FR, Cendan CM, Del PE. Pharmacology and therapeutic potential of sigma
pubmed: 19587856 pmcid: 2701284 doi: 10.2174/157015908787386113
Omi T, Tanimukai H, Kanayama D, Sakagami Y, Tagami S, Okochi M, et al. Fluvoxamine alleviates ER stress via induction of sigma-1 receptor. Cell Death Dis. 2014;5:e1332.
pubmed: 25032855 pmcid: 4123092 doi: 10.1038/cddis.2014.301
Ishima T, Fujita Y, Hashimoto K. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells. Eur J Pharm. 2014;727:167–73.
doi: 10.1016/j.ejphar.2014.01.064
WHO. Therapeutics and COVID-19: living guideline. 6-7-2021. https://www.who.int/publications/i/item/WHO-2019-nCoV-therapeutics-2021.2 .
Schloer S, Brunotte L, Mecate-Zambrano A, Zheng S, Tang J, Ludwig S, et al. Drug synergy of combinatory treatment with remdesivir and the repurposed drugs fluoxetine and itraconazole effectively impairs SARS-CoV-2 infection in vitro. Br J Pharm. 2021;178:2339–50.
doi: 10.1111/bph.15418
Drobnik W, Liebisch G, Audebert FX, Fröhlich D, Glück T, Vogel P, et al. Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. J Lipid Res. 2003;44:754–61.
pubmed: 12562829 doi: 10.1194/jlr.M200401-JLR200
Wong ML, Xie B, Beatini N, Phu P, Marathe S, Johns A, et al. Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: a possible link between inflammatory cytokines and atherogenesis. Proc Natl Acad Sci USA. 2000;97:8681–6.
pubmed: 10890909 pmcid: 27008 doi: 10.1073/pnas.150098097
Claus RA, Bunck AC, Bockmeyer CL, Brunkhorst FM, Lösche W, Kinscherf R, et al. Role of increased sphingomyelinase activity in apoptosis and organ failure of patients with severe sepsis. FASEB J. 2005;19:1719–21.
pubmed: 16051685 doi: 10.1096/fj.04-2842fje
Kornhuber J, Rhein C, Müller CP, Mühle C. Secretory sphingomyelinase in health and disease. Biol Chem. 2015;396:707–36.
pubmed: 25803076 doi: 10.1515/hsz-2015-0109
Peng H, Li C, Kadow S, Henry BD, Steinmann J, Becker KA, et al. Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. J Mol Med. 2015;93:675–89.
pubmed: 25616357 doi: 10.1007/s00109-014-1246-y
Chung HY, Witt CJ, Jbeily N, Hurtado-Oliveros J, Giszas B, Lupp A, et al. Acid sphingomyelinase inhibition prevents development of sepsis sequelae in the murine liver. Sci Rep. 2017;7:12348.
pubmed: 28955042 pmcid: 5617833 doi: 10.1038/s41598-017-11837-2
Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, Angus DC, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020;324:1330–41.
pubmed: 32876694 doi: 10.1001/jama.2020.17023
Hoertel N, Sánchez-Rico M, Vernet R, Beeker N, Neuraz A, Alvarado JM, et al. Dexamethasone use and mortality in hospitalized patients with coronavirus disease 2019: a multicentre retrospective observational study. Br J Clin Pharmacol. 2021;87:3766–75.
pubmed: 33608891 doi: 10.1111/bcp.14784
Tleyjeh IM, Kashour Z, Damlaj M, Riaz M, Tlayjeh H, Altannir M, et al. Efficacy and safety of tocilizumab in COVID-19 patients: A living systematic review and meta-analysis. Clin Microbiol Infect. 2021;27:215–27.
pubmed: 33161150 doi: 10.1016/j.cmi.2020.10.036
Perry DM, Newcomb B, Adada M, Wu BX, Roddy P, Kitatani K, et al. Defining a role for acid sphingomyelinase in the p38/interleukin-6 pathway. J Biol Chem. 2014;289:22401–12.
pubmed: 24951586 pmcid: 4139247 doi: 10.1074/jbc.M114.589648
Schütze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Krönke M. TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell. 1992;71:765–76.
pubmed: 1330325 doi: 10.1016/0092-8674(92)90553-O
Köhler CA, Freitas TH, Stubbs B, Maes M, Solmi M, Veronese N, et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: Systematic review and meta-analysis. Mol Neurobiol. 2018;55:4195–206.
pubmed: 28612257
Vozella V, Basit A, Piras F, Realini N, Armirotti A, Bossu P, et al. Elevated plasma ceramide levels in post-menopausal women: a cross-sectional study. Aging. 2019;11:73–88.
pubmed: 30620722 pmcid: 6339790 doi: 10.18632/aging.101719
Park MH, Lee JK, Park KH, Jung IK, Kim KT, Lee YS, et al. Vascular and neurogenic rejuvenation in aging mice by modulation of ASM. Neuron. 2018;100:167–82.
pubmed: 30269989 doi: 10.1016/j.neuron.2018.09.010
Babenko NA, Garkavenko VV, Storozhenko GV, Timofiychuk OA. Role of acid sphingomyelinase in the age-dependent dysregulation of sphingolipids turnover in the tissues of rats. Gen Physiol Biophys. 2016;35:195–205.
pubmed: 26830134 doi: 10.4149/gpb_2015046
Couttas TA, Kain N, Tran C, Chatterton Z, Kwok JB, Don AS. Age-dependent changes to sphingolipid balance in the human hippocampus are gender-specific and may sensitize to neurodegeneration. J Alzheimers Dis. 2018;63:503–14.
pubmed: 29660940 doi: 10.3233/JAD-171054
Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA. 2004;101:2070–5.
pubmed: 14970312 pmcid: 357053 doi: 10.1073/pnas.0305799101
Spijkers LJA, van den Akker RFP, Janssen BJA, Debets JJ, De Mey JGR, Stroes ESG, et al. Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide. PLoS ONE. 2011;6:e21817.
pubmed: 21818267 pmcid: 3139577 doi: 10.1371/journal.pone.0021817
Boini KM, Zhang C, Xia M, Poklis JL, Li PL. Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet. J Pharm Exp Ther. 2010;334:839–46.
doi: 10.1124/jpet.110.168815
Wang J, Pendurthi UR, Rao LVM. Sphingomyelin encrypts tissue factor: ATP-induced activation of A-SMase leads to tissue factor decryption and microvesicle shedding. Blood Adv. 2017;1:849–62.
pubmed: 28758160 pmcid: 5531194 doi: 10.1182/bloodadvances.2016003947
Wang J, Pendurthi UR, Rao LVM. Acid sphingomyelinase plays a critical role in LPS- and cytokine-induced tissue factor procoagulant activity. Blood. 2019;134:645–55.
pubmed: 31262782 pmcid: 6695563 doi: 10.1182/blood.2019001400
Wang J, Pendurthi UR, Yi G, Rao VM. SARS-CoV-2 infection induces the activation of tissue factor-mediated coagulation via activation of acid sphingomyelinase. Blood. 2021;138:344–9.
pubmed: 34075401 pmcid: 8172270 doi: 10.1182/blood.2021010685
Hoertel N, Sánchez-Rico M, Cougoule C, Gulbins E, Kornhuber J, Carpinteiro A, et al. Repurposing antidepressants inhibiting the acid sphingomyelinase/ceramide system against COVID-19: current evidence and potential mechanisms. Mol Psychiatry. 2021. https://doi.org/10.1038/s41380-021-01254-3 .

Auteurs

Johannes Kornhuber (J)

Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany. johannes.kornhuber@uk-erlangen.de.

Nicolas Hoertel (N)

AP-HP.Centre - Université de Paris, Département Médico-Universitaire de Psychiatrie et Addictologie, Hôpital Corentin-Celton, 92130, Issy-les-Moulineaux, France.
INSERM, Institut de Psychiatrie et Neurosciences de Paris, UMR_S1266, Paris, France.

Erich Gulbins (E)

Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.
Department of Surgery, University of Cincinnati, Cincinnati, OH, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH