Genetic evolution to tyrosine kinase inhibitory therapy in patients with EGFR-mutated non-small-cell lung cancer.


Journal

British journal of cancer
ISSN: 1532-1827
Titre abrégé: Br J Cancer
Pays: England
ID NLM: 0370635

Informations de publication

Date de publication:
11 2021
Historique:
received: 12 04 2021
accepted: 17 09 2021
revised: 31 08 2021
pubmed: 3 10 2021
medline: 6 1 2022
entrez: 2 10 2021
Statut: ppublish

Résumé

Tumour heterogeneity impacts the efficacy of metastatic cancer treatment even if actionable mutations are identified. Clinicians need to understand if assessing one lesion provides reliable information to drive a therapeutic decision in non-small-cell lung cancer (NSCLC) patients. We analysed inter-tumour heterogeneity from five autopsied individuals with NSCLC-harbouring mutations in the epidermal growth factor receptor (EGFR), treated with EGFR tyrosine kinase inhibitors (TKIs). Through a comprehensive next-generation sequencing (NGS) oncopanel, and an EGFR panel for digital droplet PCR (ddPCR), we compared metastases within individuals, longitudinal biopsies from the same lesions and, whenever possible, the primary naive tumour. Analysis of 22 necropsies from five patients revealed homogeneity in pathogenic mutations and TKI-resistance mechanisms within each patient in four of them. In-depth analysis by whole-exome sequencing from patient 1 confirmed homogeneity in clonal mutations, but heterogeneity in passenger subclonal alterations. Different resistance mechanisms were detected depending on the patient and line of treatment. Three patients treated with a c-MET inhibitor in combination with TKI lost MET amplification upon progression. At a given point and under selective TKI pressure, a single metastasis biopsy in disseminated tumours from EGFR-mutated NSCLC patients could provide a reasonable assessment of actionable alterations useful for therapeutic decisions.

Sections du résumé

BACKGROUND
Tumour heterogeneity impacts the efficacy of metastatic cancer treatment even if actionable mutations are identified. Clinicians need to understand if assessing one lesion provides reliable information to drive a therapeutic decision in non-small-cell lung cancer (NSCLC) patients.
METHODS
We analysed inter-tumour heterogeneity from five autopsied individuals with NSCLC-harbouring mutations in the epidermal growth factor receptor (EGFR), treated with EGFR tyrosine kinase inhibitors (TKIs). Through a comprehensive next-generation sequencing (NGS) oncopanel, and an EGFR panel for digital droplet PCR (ddPCR), we compared metastases within individuals, longitudinal biopsies from the same lesions and, whenever possible, the primary naive tumour.
RESULTS
Analysis of 22 necropsies from five patients revealed homogeneity in pathogenic mutations and TKI-resistance mechanisms within each patient in four of them. In-depth analysis by whole-exome sequencing from patient 1 confirmed homogeneity in clonal mutations, but heterogeneity in passenger subclonal alterations. Different resistance mechanisms were detected depending on the patient and line of treatment. Three patients treated with a c-MET inhibitor in combination with TKI lost MET amplification upon progression.
CONCLUSION
At a given point and under selective TKI pressure, a single metastasis biopsy in disseminated tumours from EGFR-mutated NSCLC patients could provide a reasonable assessment of actionable alterations useful for therapeutic decisions.

Identifiants

pubmed: 34599295
doi: 10.1038/s41416-021-01558-9
pii: 10.1038/s41416-021-01558-9
pmc: PMC8608949
doi:

Substances chimiques

Protein Kinase Inhibitors 0
EGFR protein, human EC 2.7.10.1
ErbB Receptors EC 2.7.10.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1561-1569

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Mehta A, Dobersch S, Romero-Olmedo AJ, Barreto G. Epigenetics in lung cancer diagnosis and therapy. Cancer Metastasis Rev. 2015;34:229–41.
doi: 10.1007/s10555-015-9563-3
Meaney CL, Zingone A, Brown D, Yu Y, Cao L, Ryan BM. Identification of serum inflammatory markers as classifiers of lung cancer mortality for stage I adenocarcinoma. Oncotarget. 2017;8:40946–57.
doi: 10.18632/oncotarget.16784
Castellanos E, Feld E, Horn L. Driven by mutations: the predictive value of mutation subtype in EGFR-mutated non-small cell lung cancer. J Thorac Oncol. 2017;12:612–23.
doi: 10.1016/j.jtho.2016.12.014
Veronesi G. Lung cancer screening. Thorac Surg Clin. 2015;25:161–74.
doi: 10.1016/j.thorsurg.2014.12.002
Iacobuzio-Donahue CA, Michael C, Baez P, Kappagantula R, Hooper JE, Hollman TJ. Cancer biology as revealed by the research autopsy. Nat Rev Cancer. 2019;19:686–97.
Mayo-de-las-Casas C, Garzón Ibáñez M, Jordana-Ariza N, García-Peláez B, Balada-Bel A, Villatoro S, et al. An update on liquid biopsy analysis for diagnostic and monitoring applications in non-small cell lung cancer. Expert Rev Mol Diagn. 2018;18:35–45.
doi: 10.1080/14737159.2018.1407243
Postel M, Roosen A, Laurent-Puig P, Taly V, Wang-Renault S-F. Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective. Expert Rev Mol Diagn. 2018;18:7–17.
doi: 10.1080/14737159.2018.1400384
Sunami K, Takahashi H, Tsuchihara K, Takeda M, Suzuki T, Naito Y, et al. Clinical practice guidance for next-generation sequencing in cancer diagnosis and treatment (Edition 1.0). Cancer Sci. 2018;109:2980–5.
doi: 10.1111/cas.13730
Wang DC, Wang W, Zhu B, Wang X. Lung cancer heterogeneity and new strategies for drug therapy. Annu Rev Pharm Toxicol. 2018;58:531–46.
doi: 10.1146/annurev-pharmtox-010716-104523
de Sousa VML, Carvalho L. Heterogeneity in lung cancer. Pathobiology. 2018;85:96–107.
doi: 10.1159/000487440
Watanabe S, Minegishi Y, Yoshizawa H, Maemondo M, Inoue A, Sugawara S, et al. Effectiveness of gefitinib against non-small-cell lung cancer with the uncommon EGFR mutations G719X and L861Q. J Thorac Oncol. 2014;9:189–94.
doi: 10.1097/JTO.0000000000000048
Wu JY, Yu CJ, Chang YC, Yang CH, Shih JY, Yang PC. Effectiveness of tyrosine kinase inhibitors on “uncommon” epidermal growth factor receptor mutations of unknown clinical significance in non-small cell lung cancer. Clin Cancer Res. 2011;17:3812–21.
doi: 10.1158/1078-0432.CCR-10-3408
Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Molecular Cancer. BioMed Central Ltd. 2018;17:1–19.
Xiao Y, Yin C, Wang Y, Lv H, Wang W, Huang Y, et al. FBXW7 deletion contributes to lung tumor development and confers resistance to gefitinib therapy. Mol Oncol. 2018;12:883–95.
doi: 10.1002/1878-0261.12200
Yokobori T, Yokoyama Y, Mogi A, Endoh H, Altan B, Kosaka T, et al. FBXW7 mediates chemotherapeutic sensitivity and prognosis in NSCLCs. Mol Cancer Res. 2014;12:32–7.
doi: 10.1158/1541-7786.MCR-13-0341
Yu HG, Wei W, Xia LH, Han WL, Zhao P, Wu SJ, et al. FBW7 upregulation enhances cisplatin cytotoxicity in nonsmall cell lung cancer cells. Asian Pacific J Cancer Prev. 2013;14:6321–6.
doi: 10.7314/APJCP.2013.14.11.6321
Shibata T, Saito S, Kokubu A, Suzuki T, Yamamoto M, Hirohashi S. Global downstream pathway analysis reveals a dependence of oncogenic NF-E2-related factor 2 mutation on the mTOR growth signaling pathway. Cancer Res. 2010;70:9095–105.
doi: 10.1158/0008-5472.CAN-10-0384
Singh A, Bodas M, Wakabayashi N, Bunz F, Biswal S. Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. Antioxid Redox Signal. 2010;13:1627–37.
doi: 10.1089/ars.2010.3219
McDonald JT, Kim K, Norris AJ, Vlashi E, Phillips TM, Lagadec C, et al. Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res. 2010;70:8886–95.
doi: 10.1158/0008-5472.CAN-10-0171
Jeong Y, Hoang NT, Lovejoy A, Stehr H, Newman AM, Gentles AJ, et al. Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiation resistance. Cancer Discov. 2017;7:86–101.
doi: 10.1158/2159-8290.CD-16-0127
Ariyasu R, Nishikawa S, Uchibori K, Oh-hara T, Yoshizawa T, Dotsu Y, et al. High ratio of T790M to EGFR activating mutations correlate with the osimertinib response in non-small-cell lung cancer. Lung Cancer. 2018;117:1–6.
doi: 10.1016/j.lungcan.2017.12.018
Chabon JJ, Simmons AD, Lovejoy AF, Esfahani MS, Newman AM, Haringsma HJ, et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun. 2016;7:11815.
doi: 10.1038/ncomms11815
Piotrowska Z, Niederst MJ, Karlovich CA, Wakelee HA, Neal JW, Mino-Kenudson M, et al. Heterogeneity underlies the emergence of EGFRT790 wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor. Cancer Discov. 2015;5:713–22.
doi: 10.1158/2159-8290.CD-15-0399
Tamborero D, Rubio-Perez C, Deu-Pons J, Schroeder MP, Vivancos A, Rovira A, et al. Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med. 2018;10:25.
doi: 10.1186/s13073-018-0531-8
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1–pl1.
doi: 10.1126/scisignal.2004088
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.
doi: 10.1158/2159-8290.CD-12-0095
Friedman R. Drug resistance in cancer: molecular evolution and compensatory proliferation. Oncotarget. 2016;7:11746–55.
doi: 10.18632/oncotarget.7459
Inukai M, Toyooka S, Ito S, Asano H, Ichihara S, Soh J, et al. Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res. 2006;66:7854–8.
doi: 10.1158/0008-5472.CAN-06-1951
Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell. 2010;17:77–88.
doi: 10.1016/j.ccr.2009.11.022
Lai GGY, Lim TH, Lim J, Liew PJR, Kwang XL, Nahar R, et al. Clonal MET amplification as a determinant of tyrosine kinase inhibitor resistance in epidermal growth factor receptor-mutant non-small-cell lung cancer. J Clin Oncol. 2019;37:876–84.
doi: 10.1200/JCO.18.00177
Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl J Med. 2012;366:883–92.
doi: 10.1056/NEJMoa1113205
Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung cancer. N. Engl J Med. 2017;376:2109–21.
doi: 10.1056/NEJMoa1616288
Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3:75ra26–75ra26.
Roper N, Brown A-L, Wei JS, Pack S, Trindade C, Kim C, et al. Clonal evolution and heterogeneity of osimertinib acquired resistance mechanisms in EGFR mutant lung cancer. Cell Rep. Med. 2020;1:100007.
doi: 10.1016/j.xcrm.2020.100007
Kim S, Kim TM, Kim D-W, Kim S, Kim M, Ahn Y-O, et al. Acquired resistance of MET-amplified non-small cell lung cancer cells to the MET inhibitor capmatinib. Cancer Res Treat. 2019;51:951–62.
doi: 10.4143/crt.2018.052
Awad MM, Katayama R, McTigue M, Liu W, Deng Y-L, Brooun A, et al. Acquired resistance to crizotinib from a mutation in CD74–ROS1. N. Engl J Med. 2013;368:2395–401.
doi: 10.1056/NEJMoa1215530
Turajlic S, Xu H, Litchfield K, Rowan A, Chambers T, Lopez JI, et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell. 2018;173:581–94.e12.
doi: 10.1016/j.cell.2018.03.057
Noorani A, Li X, Goddard M, Crawte J, Alexandrov LB, Secrier M, et al. Genomic evidence supports a clonal diaspora model for metastases of esophageal adenocarcinoma. Nat Genet. 2020;52:74–83.
doi: 10.1038/s41588-019-0551-3
Suda K, Murakami I, Sakai K, Tomizawa K, Mizuuchi H, Sato K, et al. Heterogeneity in resistance mechanisms causes shorter duration of epidermal growth factor receptor kinase inhibitor treatment in lung cancer. Lung Cancer. 2016;91:36–40.
doi: 10.1016/j.lungcan.2015.11.016
Reiter JG, Makohon-Moore AP, Gerold JM, Heyde A, Attiyeh MA, Kohutek ZA, et al. Minimal functional driver gene heterogeneity among untreated metastases. Science. 2018;361:1033–7.
doi: 10.1126/science.aat7171
Reiter JG, Baretti M, Gerold JM, Makohon-Moore AP, Daud A, Iacobuzio-Donahue CA, et al. An analysis of genetic heterogeneity in untreated cancers. Nat Rev Cancer. 2019;19:639–50.
Juric D, Castel P, Griffith M, Griffith OL, Won HH, Ellis H, et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)K a inhibitor. Nature. 2015;518:240–4.
doi: 10.1038/nature13948
Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94.
doi: 10.1038/nrclinonc.2017.166

Auteurs

Alex Martinez-Marti (A)

Department of Medical Oncology, Vall d'Hebron University Hospital (VHUH), Barcelona, Spain.
Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
Autonomous University of Barcelona (UAB), Barcelona, Spain.

Enriqueta Felip (E)

Department of Medical Oncology, Vall d'Hebron University Hospital (VHUH), Barcelona, Spain.
Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
University of Vic (UVIC) Central University of Catalonia (UCC), Barcelona, Spain.

Francesco Mattia Mancuso (FM)

Cancer Genomics Group, VHIO, Barcelona, Spain.

Ginevra Caratú (G)

Cancer Genomics Group, VHIO, Barcelona, Spain.

Judit Matito (J)

Cancer Genomics Group, VHIO, Barcelona, Spain.

Paolo Nuciforo (P)

Molecular Oncology Group, VHIO, Barcelona, Spain.

Irene Sansano (I)

Pathology Department, VHUH, Barcelona, Spain.

Nely Diaz-Mejia (N)

Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

Susana Cedrés (S)

Department of Medical Oncology, Vall d'Hebron University Hospital (VHUH), Barcelona, Spain.
Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

Ana Callejo (A)

Department of Medical Oncology, Vall d'Hebron University Hospital (VHUH), Barcelona, Spain.
Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

Patricia Iranzo (P)

Department of Medical Oncology, Vall d'Hebron University Hospital (VHUH), Barcelona, Spain.
Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

Nuria Pardo (N)

Department of Medical Oncology, Vall d'Hebron University Hospital (VHUH), Barcelona, Spain.
Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

Josep Maria Miquel (JM)

Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

Alejandro Navarro (A)

Department of Medical Oncology, Vall d'Hebron University Hospital (VHUH), Barcelona, Spain.
Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

Ana Vivancos (A)

Cancer Genomics Group, VHIO, Barcelona, Spain.

Miriam Sansó (M)

Cancer Genomics Group, VHIO, Barcelona, Spain. miriam.sanso@ssib.es.
Balearic Islands Health Research Institute (IdISBa), Palma de Mallorca, Spain. miriam.sanso@ssib.es.
Genomics for Precision Oncology Group, Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), Palma de Mallorca, Spain. miriam.sanso@ssib.es.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH