Electrochemical behavior, biocompatibility and mechanical performance of biodegradable iron with PEI coating.

biodegradable iron scaffold cytotoxicity hemocompatibility mechanical properties polyethyleneimine

Journal

Journal of biomedical materials research. Part A
ISSN: 1552-4965
Titre abrégé: J Biomed Mater Res A
Pays: United States
ID NLM: 101234237

Informations de publication

Date de publication:
03 2022
Historique:
revised: 20 09 2021
received: 17 03 2021
accepted: 22 09 2021
pubmed: 2 10 2021
medline: 1 4 2022
entrez: 1 10 2021
Statut: ppublish

Résumé

Coating of the biodegradable metals represents an effective way of modification of their properties. Insufficient biological, mechanical, or degradation performance of pure metals may be enhanced when the proper type of organic polymer coating is used. In our previous work, the significant effect of the polyethyleneimine (PEI) coating not only on the rate but also on the type of corrosion was discovered. To bring a comprehensive overview of the Fe-PEI system performance, iron-based biodegradable scaffolds with polyethyleneimine coating were studied and their cytocompatibility and hemocompatibility, and mechanical properties were evaluated and discussed in this work. Electrochemical impedance spectroscopy (EIS) measurements were conducted for further study of material behavior. Biological analyses (MTS assay, fluorescent imaging, hemocompatibility tests) showed better cell proliferation on the surface of Fe-PEI samples but not sufficient overall cytocompatibility. Good anti-platelet adhesion properties but higher hemolysis when compared to the pure iron was also observed for the coated samples. Mechanical properties of the prepared Fe-PEI material were enhanced after coating. These findings suggest that the Fe-PEI may be an interesting potential biomaterial after further composition optimization resulting in lower cytotoxicity and better hemocompatibility.

Identifiants

pubmed: 34595831
doi: 10.1002/jbm.a.37318
doi:

Substances chimiques

Alloys 0
Biocompatible Materials 0
Polyethyleneimine 9002-98-6
Iron E1UOL152H7

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

659-671

Informations de copyright

© 2021 Wiley Periodicals LLC.

Références

Sezer N, Evis Z, Kayhan SM, Tahmasebifar A, Koç M. Review of magnesium-based biomaterials and their applications. J Magnesium Alloys. 2018;6:23-43. https://doi.org/10.1016/j.jma.2018.02.003
Park H, Temenoff JS, Mikos AG. Biodegradable Orthopedic Implants. Springer; 2007.
F. Witte, A. Eliezer, Degradation of Implant Materials, 2012. Springer, https://doi.org/10.1007/978-1-4614-3942-4_5
Liu Y, Zheng Y, Chen XH, et al. Fundamental theory of biodegradable metals-definition, criteria, and design. Adv Funct Mater. 2019;29:1-21. https://doi.org/10.1002/adfm.201805402
Yun Y, Dong Z, Lee N, et al. Revolutionizing biodegradable metals. Mater Today. 2009;12:22-32.
Hermawan H, Dubé D, Mantovani D. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. J Biomed Mater Res -Part A. 2010;93:1-11. https://doi.org/10.1002/jbm.a.32224
Yeung KW, Wong KH. Biodegradable metallic materials for orthopaedic implantations: a review. Technol Heal Care. 2012;20:345-362. https://doi.org/10.3233/THC-2012-0685
Zhang S, Zhang X, Zhao C, et al. Research on an mg-Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6:626-640. https://doi.org/10.1016/j.actbio.2009.06.028
Seitz JM, Durisin M, Goldman J, Drelich JW. Recent advances in biodegradable metals for medical sutures: a critical review. Adv Healthc Mater. 2015;4:1915-1936. https://doi.org/10.1002/adhm.201500189
Vojtěch D, Kubásek J, Šerák J, Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515-3522. https://doi.org/10.1016/j.actbio.2011.05.008
Wen CE, Yamada Y, Shimojima K, Chino Y, Hosokawa H, Mabuchi M. Porous Bioresorbable magnesium as bone substitute. Mater Sci Forum. 2009;419-422:1001-1006.
Liao Y, Qiu G, Yang Y, Lv X, Bai C. Preparation and compressive properties of magnesium foam. Rare Met Mater Eng. 2016;45:2498-2502.
Yang Y, He C, Dianyu E, et al. Mg bone implant: features, developments and perspectives. Mater Des. 2020;185:108259.
Li Y, Zhou J, Pavanram P, et al. Additively manufactured biodegradable porous magnesium. Acta Biomater. 2018;67:378-392. https://doi.org/10.1016/j.actbio.2017.12.008
O. Diegel, Additive manufacturing: an overview, Elsevier, 2014. https://doi.org/10.1016/B978-0-08-096532-1.01000-1
Li Y, Jahr H, Pavanram P, et al. Additively manufactured functionally graded biodegradable porous iron. Acta Biomater. 2019;96:646-661. https://doi.org/10.1016/j.actbio.2019.07.013
Zhang Q, Cao P. Degradable porous Fe-35wt.%Mn produced via powder sintering from NH4HCO3 porogen. Mater Chem Phys. 2015;163:394-401. https://doi.org/10.1016/j.matchemphys.2015.07.056
Heiden M, Walker E, Nauman E, Stanciu L. Evolution of novel bioresorbable iron-manganese implant surfaces and their degradation behaviors in vitro. J Biomed Mater Res -Part A. 2015;103:185-193. https://doi.org/10.1002/jbm.a.35155
Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728-1734. https://doi.org/10.1016/j.biomaterials.2005.10.003
Liu X, Sun J, Zhou F, et al. Micro-alloying with Mn in Zn-mg alloy for future biodegradable metals application. Mater Des. 2016;94:95-104. https://doi.org/10.1016/j.matdes.2015.12.128
Yin YX, Zhou C, Shi YP, et al. Hemocompatibility of biodegradable Zn-0.8 wt% (cu, Mn, Li) alloys. Mater Sci Eng C. 2019;104:109896.
Li G, Yang H, Zheng Y, et al. Challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility. Acta Biomater. 2019;97:23-45. https://doi.org/10.1016/j.actbio.2019.07.038
Kafri A, Ovadia S, Yosafovich-Doitch G, Aghion E. In vivo performances of pure Zn and Zn-Fe alloy as biodegradable implants. J Mater Sci Mater Med. 2018;29:1-8. https://doi.org/10.1007/s10856-018-6096-7
Hrubovčáková M, Kupková M, Džupon M. Fe and Fe-P foam for biodegradable bone replacement material: morphology, corrosion behaviour, and mechanical properties. Adv Mater Sci Eng. 2016;2016:1-9. https://doi.org/10.1155/2016/6257368
Oriňaková R, Oriňak A, Giretová M, et al. A study of cytocompatibility and degradation of iron-based biodegradable materials. J Biomater Appl. 2016;30:1060-1070. https://doi.org/10.1177/0885328215615459
Cheng J, Zheng YF. In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering. J Biomed Mater Res -Part B Appl Biomater. 2013;101(4):485-497. https://doi.org/10.1002/jbm.b.32783
Fermentation OF. Adsorption of bovine serum albumin onto metal oxide surfaces. J Ferment Bioeng. 1996;81:163-167.
Hedberg Y, Wang X, Hedberg J, Lundin M, Blomberg E, Odnevall Wallinder I. Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release. J Mater Sci Mater Med. 2013;24:1015-1033. https://doi.org/10.1007/s10856-013-4859-8
Yang Y, Cavin R, Ong JL. Protein adsorption on titanium surfaces and their effect on osteoblast attachment. J Biomed Mater Res-Part A. 2003;67:344-349. https://doi.org/10.1002/jbm.a.10578
Carré A, Lacarrière V. DFT PEI ENERGIE-how substrate properties control cell adhesion. A physical-chemical approach. J Adhes Sci Technol. 2010;24:815-830. https://doi.org/10.1163/016942409X12598231567862
Gąsior G, Szczepański J, Radtke A. Biodegradable iron-based materials-what was done and what more can be done? Materials. 2021;14:3381.
Oriňaková R, Gorejová R, Králová ZO, Oriňak A. Surface modifications of biodegradable metallic foams for medical applications. Coatings. 2020;10(819):1-32. https://doi.org/10.3390/coatings10090819
Reindl A, Borowsky R, Hein SB, Geis-Gerstorfer J, Imgrund P, Petzoldt F. Degradation behavior of novel Fe/ß-TCP composites produced by powder injection molding for cortical bone replacement. J Mater Sci. 2014;49:8234-8243. https://doi.org/10.1007/s10853-014-8532-5
Yang C, Huan Z, Wang X, Wu C, Chang J. 3D printed Fe scaffolds with HA Nanocoating for bone regeneration. ACS Biomater Sci Eng. 2018;4:608-616. https://doi.org/10.1021/acsbiomaterials.7b00885
Mohamad Rodzi SNH, Zuhailawati H, Dhindaw BK. Mechanical and degradation behaviour of biodegradable magnesium-zinc/hydroxyapatite composite with different powder mixing techniques. J Magnesium Alloys. 2019;7:566-576. https://doi.org/10.1016/j.jma.2019.11.003
Jamesh M, Kumar S, Narayanan TSNS. Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications. J Coat Technol Res. 2012;9:495-502. https://doi.org/10.1007/s11998-011-9382-6
Haverová L, Oriňaková R, Oriňak A, et al. An in vitro corrosion study of open cell iron structures with PEG coating for bone replacement applications. Metals. 2018;8:1-21. https://doi.org/10.3390/met8070499
Oriňaková R, Gorejová R, Macko J, et al. Evaluation of in vitro biocompatibility of open cell iron structures with PEG coating. Appl Surf Sci. 2019;475:515-518. https://doi.org/10.1016/j.apsusc.2019.01.010
Yusop AHM, Daud NM, Nur H, et al. Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants. Sci Rep. 2015;5:1-17. https://doi.org/10.1038/srep11194
Hrubovčáková M, Kupková M, Džupon M, Giretová M, Medvecký L, Džunda R. Biodegradable polylactic acid and polylactic acid/hydroxyapatite coated iron foams for bone replacement materials. Int J Electrochem Sci. 2017;12:11122-11136. https://doi.org/10.20964/2017.12.53
Oriňaková R, Gorejová R, Králová ZO, et al. Influence of albumin interaction on corrosion resistance of sintered iron biomaterials with polyethyleneimine coating. Appl Surf Sci. 2020;509:145379. https://doi.org/10.1016/j.apsusc.2020.145379
Gorejová R, Oriňaková R, Králová ZO, et al. In vitro corrosion behavior of biodegradable iron foams with polymeric coating. Materials. 2020;13:184.
ISO-10993-5. Biological evaluation of medical devices-part 5 tests for cytotoxicity: in vitro methods. Arlington: ANSI/AAMI; 1999.
International Organization for Standardization (ISO). Mechanical Testing of Metals - Ductility Testing - Compression Test for Porous and Cellular Metalls; ISO: Genva, Switzerland, 2011; Volume ISO 13314:2011.
Oriňaková R, Gorejová R, Orságová Z, et al. Evaluation of mechanical properties and Hemocompatibility of open cell iron foams with polyethylene glycol coating. Appl Surf Sci. 2019;505:144634.
Roman OV, Hausner HH. Investigation in the linear shrinkage of metal powder compacts during sintering. J Jpn Soc Powder Powder Metall. 1962;9:228-236.
Sumishaa A, Arthanareeswarana G, Fauzi Ismailb A, Kumarc PD, Shankarc MV. Functionalized titanate nanotube-polyetherimide nanocomposite membrane for improved salt rejection under low pressure nanofiltration. RSC Adv. 2015;5:39464-39473.
Zhou J, Yang Y, Alonso Frank M, Detsch R, Boccaccini AR, Virtanen S. Accelerated degradation behavior and Cytocompatibility of pure iron treated with sandblasting. ACS Appl Mater Interfaces. 2016;8:26482-26492. https://doi.org/10.1021/acsami.6b07068
Shen C, Liu X, Fan B, et al. Mechanical properties,: In vitro degradation behavior, hemocompatibility and cytotoxicity evaluation of Zn-1.2Mg alloy for biodegradable implants. RSC Adv. 2016;6:86410-86419.
Sherif ESM, Abdo HS, El Abedin SZ. Corrosion inhibition of cast iron in arabian gulf seawater by two different ionic liquids. Materials. 2015;8:3883-3895. https://doi.org/10.3390/ma8073883
Tonna C, Wang C, Mei D, Lamaka SV, Zheludkevich ML, Buhagiar J. Biodegradation behaviour of Fe-based alloys in Hanks' balanced salt solutions: part I. Material characterisation and corrosion testing. Bioact Mater. 2022;7:426-440. https://doi.org/10.1016/j.bioactmat.2021.05.048
Wiesener M, Peters K, Taube A, et al. Corrosion properties of bioresorbable FeMn-Ag alloys prepared by selective laser melting. Mater Corros. 2017;68:1028-1036. https://doi.org/10.1002/maco.201709478
Ahmed R, Reifsnider K. Study of influence of electrode geometry on impedance spectroscopy. Int J Electrochem Sci. 2011;6:1159-1174.
P. Mulinti, J.E. Brooks, B. Lervick, J.E. Pullan, A.E. Brooks, Strategies to improve the hemocompatibility of biodegradable biomaterials, Elsevier Ltd., 2018. https://doi.org/10.1016/B978-0-08-100497-5.00017-3
Bagha PS, Khakbiz M, Sheibani S, Ebrahimi-Barough S, Hermawan H. In vitro degradation, Hemocompatibility, and Cytocompatibility of nanostructured absorbable Fe-Mn-Ag alloys for biomedical application. ACS Biomater Sci Eng. 2020;6:2094-2106. https://doi.org/10.1021/acsbiomaterials.0c00263
Zhong D, Jiao Y, Zhang Y, et al. Effects of the gene carrier polyethyleneimines on structure and function of blood components. Biomaterials. 2013;34:294-305. https://doi.org/10.1016/j.biomaterials.2012.09.060

Auteurs

Radka Gorejová (R)

Department of Physical Chemistry, Institute of Chemistry, Faculty of Science, P.J. Šafárik University in Košice, Košice, Slovakia.

Renáta Oriňaková (R)

Department of Physical Chemistry, Institute of Chemistry, Faculty of Science, P.J. Šafárik University in Košice, Košice, Slovakia.

Ján Macko (J)

Department of Physical Chemistry, Institute of Chemistry, Faculty of Science, P.J. Šafárik University in Košice, Košice, Slovakia.

Andrej Oriňak (A)

Department of Physical Chemistry, Institute of Chemistry, Faculty of Science, P.J. Šafárik University in Košice, Košice, Slovakia.

Miriam Kupková (M)

Division of Functional and Hybrid Systems,Division of Ceramic and Non-metallic Systems, Division of Metallic Systems, Institute of Materials Research, Slovak Academy of Sciences, Košice, Slovakia.

Monika Hrubovčáková (M)

Division of Functional and Hybrid Systems,Division of Ceramic and Non-metallic Systems, Division of Metallic Systems, Institute of Materials Research, Slovak Academy of Sciences, Košice, Slovakia.

Miroslav Džupon (M)

Division of Functional and Hybrid Systems,Division of Ceramic and Non-metallic Systems, Division of Metallic Systems, Institute of Materials Research, Slovak Academy of Sciences, Košice, Slovakia.

Tibor Sopčák (T)

Division of Functional and Hybrid Systems,Division of Ceramic and Non-metallic Systems, Division of Metallic Systems, Institute of Materials Research, Slovak Academy of Sciences, Košice, Slovakia.

Juraj Ševc (J)

Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Košice, Slovakia.

Iveta Maskaľová (I)

Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia.

Róbert Džunda (R)

Division of Functional and Hybrid Systems,Division of Ceramic and Non-metallic Systems, Division of Metallic Systems, Institute of Materials Research, Slovak Academy of Sciences, Košice, Slovakia.

Articles similaires

Hemiarthroplasty in young patients.

Hazimah Mahmud, Dong Wang, Andra Topan-Rat et al.
1.00
Humans Male Hemiarthroplasty Middle Aged Aged
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
Nitriles Tensile Strength Materials Testing Gloves, Protective Product Packaging

Classifications MeSH