On Selection Criteria for the Tuning Parameter in Robust Divergence.
Hyvarinen score
efficiency
outlier
unnormalized model
Journal
Entropy (Basel, Switzerland)
ISSN: 1099-4300
Titre abrégé: Entropy (Basel)
Pays: Switzerland
ID NLM: 101243874
Informations de publication
Date de publication:
01 Sep 2021
01 Sep 2021
Historique:
received:
06
08
2021
revised:
25
08
2021
accepted:
30
08
2021
entrez:
28
9
2021
pubmed:
29
9
2021
medline:
29
9
2021
Statut:
epublish
Résumé
Although robust divergence, such as density power divergence and γ-divergence, is helpful for robust statistical inference in the presence of outliers, the tuning parameter that controls the degree of robustness is chosen in a rule-of-thumb, which may lead to an inefficient inference. We here propose a selection criterion based on an asymptotic approximation of the Hyvarinen score applied to an unnormalized model defined by robust divergence. The proposed selection criterion only requires first and second-order partial derivatives of an assumed density function with respect to observations, which can be easily computed regardless of the number of parameters. We demonstrate the usefulness of the proposed method via numerical studies using normal distributions and regularized linear regression.
Identifiants
pubmed: 34573772
pii: e23091147
doi: 10.3390/e23091147
pmc: PMC8469821
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Japan Society for the Promotion of Science
ID : 21H00699 and 21K17713
Références
IEEE Trans Pattern Anal Mach Intell. 2012 Dec;34(12):2407-19
pubmed: 22331859