On Selection Criteria for the Tuning Parameter in Robust Divergence.

Hyvarinen score efficiency outlier unnormalized model

Journal

Entropy (Basel, Switzerland)
ISSN: 1099-4300
Titre abrégé: Entropy (Basel)
Pays: Switzerland
ID NLM: 101243874

Informations de publication

Date de publication:
01 Sep 2021
Historique:
received: 06 08 2021
revised: 25 08 2021
accepted: 30 08 2021
entrez: 28 9 2021
pubmed: 29 9 2021
medline: 29 9 2021
Statut: epublish

Résumé

Although robust divergence, such as density power divergence and γ-divergence, is helpful for robust statistical inference in the presence of outliers, the tuning parameter that controls the degree of robustness is chosen in a rule-of-thumb, which may lead to an inefficient inference. We here propose a selection criterion based on an asymptotic approximation of the Hyvarinen score applied to an unnormalized model defined by robust divergence. The proposed selection criterion only requires first and second-order partial derivatives of an assumed density function with respect to observations, which can be easily computed regardless of the number of parameters. We demonstrate the usefulness of the proposed method via numerical studies using normal distributions and regularized linear regression.

Identifiants

pubmed: 34573772
pii: e23091147
doi: 10.3390/e23091147
pmc: PMC8469821
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : Japan Society for the Promotion of Science
ID : 21H00699 and 21K17713

Références

IEEE Trans Pattern Anal Mach Intell. 2012 Dec;34(12):2407-19
pubmed: 22331859

Auteurs

Shonosuke Sugasawa (S)

Center for Spatial Information Science, The University of Tokyo, Chiba 277-8568, Japan.
Nospare Inc., Tokyo 107-0061, Japan.

Shouto Yonekura (S)

Nospare Inc., Tokyo 107-0061, Japan.
Graduate School of Social Sciences, Chiba University, Chiba 263-8522, Japan.

Classifications MeSH