Optima TB: A tool to help optimally allocate tuberculosis spending.
Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Child
Child, Preschool
Computational Biology
Cost-Benefit Analysis
Female
Health Care Costs
/ statistics & numerical data
Humans
Infant
Infant, Newborn
Male
Middle Aged
Models, Biological
Models, Economic
Prevalence
Prospective Studies
Republic of Belarus
/ epidemiology
Resource Allocation
/ economics
Software
Tuberculosis
/ economics
Young Adult
Journal
PLoS computational biology
ISSN: 1553-7358
Titre abrégé: PLoS Comput Biol
Pays: United States
ID NLM: 101238922
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
03
12
2020
accepted:
07
07
2021
revised:
07
10
2021
pubmed:
28
9
2021
medline:
27
11
2021
entrez:
27
9
2021
Statut:
epublish
Résumé
Approximately 85% of tuberculosis (TB) related deaths occur in low- and middle-income countries where health resources are scarce. Effective priority setting is required to maximise the impact of limited budgets. The Optima TB tool has been developed to support analytical capacity and inform evidence-based priority setting processes for TB health benefits package design. This paper outlines the Optima TB framework and how it was applied in Belarus, an upper-middle income country in Eastern Europe with a relatively high burden of TB. Optima TB is a population-based disease transmission model, with programmatic cost functions and an optimisation algorithm. Modelled populations include age-differentiated general populations and higher-risk populations such as people living with HIV. Populations and prospective interventions are defined in consultation with local stakeholders. In partnership with the latter, demographic, epidemiological, programmatic, as well as cost and spending data for these populations and interventions are then collated. An optimisation analysis of TB spending was conducted in Belarus, using program objectives and constraints defined in collaboration with local stakeholders, which included experts, decision makers, funders and organisations involved in service delivery, support and technical assistance. These analyses show that it is possible to improve health impact by redistributing current TB spending in Belarus. Specifically, shifting funding from inpatient- to outpatient-focused care models, and from mass screening to active case finding strategies, could reduce TB prevalence and mortality by up to 45% and 50%, respectively, by 2035. In addition, an optimised allocation of TB spending could lead to a reduction in drug-resistant TB infections by 40% over this period. This would support progress towards national TB targets without additional financial resources. The case study in Belarus demonstrates how reallocations of spending across existing and new interventions could have a substantial impact on TB outcomes. This highlights the potential for Optima TB and similar modelling tools to support evidence-based priority setting.
Identifiants
pubmed: 34570767
doi: 10.1371/journal.pcbi.1009255
pii: PCOMPBIOL-D-20-02183
pmc: PMC8496838
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1009255Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist. Author Feng Zhao was unavailable to confirm their authorship contributions. On their behalf, the corresponding author has reported their contributions to the best of their knowledge.
Références
J Infect Dis. 2005 Jan 15;191(2):150-8
pubmed: 15609223
PLoS One. 2017 Oct 3;12(10):e0185077
pubmed: 28972975
Am J Public Health. 2011 Mar;101(3):524-30
pubmed: 20516372
Indian J Med Res. 2019 Apr;149(4):517-527
pubmed: 31411176
J Stud Alcohol Drugs. 2012 Nov;73(6):911-9
pubmed: 23036208
Lancet Glob Health. 2016 Nov;4(11):e806-e815
pubmed: 27720688
J Pediatr. 1997 Jul;131(1 Pt 1):16-26
pubmed: 9255187
J Glob Infect Dis. 2011 Jan;3(1):19-24
pubmed: 21572604
Infect Dis Rep. 2016 Jun 24;8(2):6570
pubmed: 27403269
Bull World Health Organ. 2007 Apr;85(4):319-21
pubmed: 17546314
JAMA. 1992 Jul 22-29;268(4):504-9
pubmed: 1619742
Health Syst Reform. 2016 Jan 2;2(1):39-50
pubmed: 31514661
Am J Trop Med Hyg. 2013 Aug;89(2):271-80
pubmed: 23926140
Eur Respir J. 2017 Mar 22;49(3):
pubmed: 28331043
Health Syst Transit. 2010;12(3):1-115
pubmed: 21132995
PLoS Med. 2016 Oct 25;13(10):e1002152
pubmed: 27780211
J Infect Public Health. 2011 Aug;4(3):140-4
pubmed: 21843860
BMC Infect Dis. 2017 Aug 7;17(1):546
pubmed: 28784094
Lancet Glob Health. 2014 Oct;2(10):e581-91
pubmed: 25304634
Int J Tuberc Lung Dis. 2011 Jun;15 Suppl 2:30-36
pubmed: 21740657
Infect Dis Poverty. 2017 Jan 17;6(1):7
pubmed: 28093078
PLoS Med. 2010 Dec 21;7(12):e1000381
pubmed: 21203587
Ann Intern Med. 2014 Sep 16;161(6):419-28
pubmed: 25111745
MMWR Morb Mortal Wkly Rep. 2019 Mar 22;68(11):263-266
pubmed: 30897077
Int J Tuberc Lung Dis. 2009 Oct;13(10):1281-7
pubmed: 19793434
BMC Med. 2016 Mar 24;14:56
pubmed: 27012808
Public Health Action. 2014 Dec 21;4(4):243-8
pubmed: 26400703
J Int AIDS Soc. 2018 Apr;21(4):e25097
pubmed: 29652100
BMJ. 2014 Aug 05;349:g4643
pubmed: 25097193
Malar J. 2017 Sep 12;16(1):368
pubmed: 28899373
Int J Health Policy Manag. 2015 Sep 16;4(11):719-32
pubmed: 26673332
BMC Public Health. 2018 Mar 20;18(1):384
pubmed: 29558915
Lancet Glob Health. 2018 May;6(5):e514-e522
pubmed: 29580761
Cost Eff Resour Alloc. 2006 Aug 21;4:14
pubmed: 16923181
PLoS One. 2015 Nov 09;10(11):e0142290
pubmed: 26551023
Science. 1992 Aug 21;257(5073):1055-64
pubmed: 1509256
Eur Respir J. 2014 Jun;43(6):1763-75
pubmed: 24525439
Clin Infect Dis. 2019 Jun 18;69(1):159-166
pubmed: 30383204
PLoS Med. 2008 Jul 15;5(7):e152
pubmed: 18630984
Int J Mycobacteriol. 2016 Dec;5 Suppl 1:S62-S63
pubmed: 28043617
J Acquir Immune Defic Syndr. 2000 Jan 1;23(1):75-80
pubmed: 10708059
PLoS One. 2018 Mar 16;13(3):e0192944
pubmed: 29547665
Cochrane Database Syst Rev. 2013 Jan 31;(1):CD009593
pubmed: 23440842
Int J Infect Dis. 2017 Mar;56:30-33
pubmed: 27916675
Lancet. 2010 May 22;375(9728):1814-29
pubmed: 20488524
Glob Health Res Policy. 2016 Aug 2;1:10
pubmed: 29202059
Am J Epidemiol. 2000 Aug 1;152(3):247-63
pubmed: 10933272
Cochrane Database Syst Rev. 2015 May 29;(5):CD003343
pubmed: 26022367
Public Health Action. 2014 Oct 21;4(Suppl 2):S3-S12
pubmed: 26393095
Sci Rep. 2019 Mar 7;9(1):3810
pubmed: 30846709
Health Technol Assess. 2015 May;19(34):1-188, vii-viii
pubmed: 25952553
PLoS One. 2012;7(11):e47533
pubmed: 23185241
Pathog Dis. 2018 Jul 1;76(5):
pubmed: 29986020
Sci Rep. 2019 Jul 31;9(1):11126
pubmed: 31366947
Bull World Health Organ. 2009 Sep;87(9):683-91
pubmed: 19784448
Am J Public Health. 2011 Apr;101(4):654-62
pubmed: 21330583
J Acquir Immune Defic Syndr. 2015 Jul 1;69(3):365-76
pubmed: 25803164
Lancet HIV. 2018 Apr;5(4):e190-e198
pubmed: 29540265
Am J Respir Crit Care Med. 1994 Nov;150(5 Pt 1):1460-2
pubmed: 7952577
Soc Sci Med. 2009 Jun;68(12):2240-6
pubmed: 19394122