PET/CT imaging of head-and-neck and pancreatic cancer in humans by targeting the "Cancer Integrin" αvβ6 with Ga-68-Trivehexin.
Animals
Cell Line, Tumor
Gallium Radioisotopes
Head and Neck Neoplasms
Humans
Integrin alphaVbeta3
/ metabolism
Integrins
/ metabolism
Mice
Mice, SCID
Pancreatic Neoplasms
/ diagnostic imaging
Positron Emission Tomography Computed Tomography
Positron-Emission Tomography
/ methods
Squamous Cell Carcinoma of Head and Neck
Tissue Distribution
Pancreatic Neoplasms
Carcinoma
Gallium-68
Integrins
Positron emission tomography
Journal
European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
received:
14
07
2021
accepted:
05
09
2021
pubmed:
25
9
2021
medline:
27
4
2022
entrez:
24
9
2021
Statut:
ppublish
Résumé
To develop a new probe for the αvβ6-integrin and assess its potential for PET imaging of carcinomas. Ga-68-Trivehexin was synthesized by trimerization of the optimized αvβ6-integrin selective cyclic nonapeptide Tyr2 (sequence: c[YRGDLAYp(NMe)K]) on the TRAP chelator core, followed by automated labeling with Ga-68. The tracer was characterized by ELISA for activities towards integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1, as well as by cell binding assays on H2009 (αvβ6-positive) and MDA-MB-231 (αvβ6-negative) cells. SCID-mice bearing subcutaneous xenografts of the same cell lines were used for dynamic (90 min) and static (75 min p.i.) µPET imaging, as well as for biodistribution (90 min p.i.). Structure-activity-relationships were established by comparison with the predecessor compound Ga-68-TRAP(AvB6) Ga-68-Trivehexin showed a high αvβ6-integrin affinity (IC Ga-68-Trivehexin is a valuable probe for imaging of αvβ6-integrin expression in human cancers.
Identifiants
pubmed: 34559266
doi: 10.1007/s00259-021-05559-x
pii: 10.1007/s00259-021-05559-x
pmc: PMC8460406
doi:
Substances chimiques
Gallium Radioisotopes
0
Integrin alphaVbeta3
0
Integrins
0
Gallium-68
98B30EPP5S
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1136-1147Informations de copyright
© 2021. The Author(s).
Références
Sontag S. Illness as metaphor. Farrar, Straus & Giroux, New York, 1978, ISBN: 978-0-374-17443-9.
Mukherjee S. The emperor of all maladies: a biography of cancer. Scribner, New York, 2010, ISBN: 978-1-4391-0795-9.
Virchow R. Die krankhaften Geschwülste. Berlin: August Hirschwald; 1863.
Brooks PC, Clark RAF, Cheresh DA. Requirement Of Vascular Integrin α
pubmed: 7512751
Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8:604–17.
pubmed: 18497750
pmcid: 2577722
Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018;18:533–48.
pubmed: 30002479
pmcid: 6629548
Nieberler M, Reuning U, Reichart F, Notni J, Wester HJ, Schwaiger M, et al. Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers. 2017;9:116.
pmcid: 5615331
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.
pubmed: 10647931
Brown NF, Marshall JF. Integrin-Mediated TGFβ Activation Modulates the Tumour Microenvironment. Cancers. 2019;11:1221.
pmcid: 6769837
Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor β in human disease. N Engl J Med. 2000;34:1350–8.
Dong X, Zhao B, Iacob RE, Zhu J, Koksal AC, Lu C, et al. Force interacts with macromolecular structure in activation of TGF-β. Nature. 2017;542:55–9.
pubmed: 28117447
pmcid: 5586147
Ha T. Growth factor rattled out of its cage. Nature. 2017;542:40–1.
pubmed: 28150779
Worthington JJ, Klementowicz JE, Travis MA. TGFβ: a sleeping giant awoken by integrins. Trends Biochem Sci. 2011;36:47–54.
pubmed: 20870411
Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, et al. A Mutant-p53/Smad Complex Opposes p63 to Empower TGFβ-Induced Metastasis. Cell. 2009;137:87–98.
pubmed: 19345189
Ahmed S, Bradshaw AD, Geta S, Dewan MZ, Xu R. The TGFβ/Smad4 signalling pathway in pancreatic carcinogenesis and its clinical significance. J Clin Med. 2017;6:5–15.
pmcid: 5294958
Inman GJ. Switching TGFβ from a tumor suppressor to a tumor promoter. Curr Opin Genet Dev. 2011;21:93–9.
pubmed: 21251810
Notni J, Reich D, Maltsev OV, Kapp TG, Steiger K, Hoffmann F, et al. In-vivo PET Imaging of the Cancer Integrin αvβ6 Using
pubmed: 27980050
Koopman Van Aarsen LA, Leone DR, Ho S, Dolinski BM, McCoon PE, LePage DJ, et al. Antibody-Mediated Blockade of Integrin α
Sipos B, Hahn D, Carceller A, Piulats J, Hedderich J, Kalthoff H, et al. Immunohistochemical screening for β
Reader CS, Vallath S, Steele CW, Haider S, Brentnall A, Desai A, et al. The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. J Pathol. 2019;249:332–42.
pubmed: 31259422
pmcid: 6852434
Steiger K, Schlitter AM, Weichert W, Esposito I, Wester HJ, Notni J. Perspective of αvβ6-Integrin Imaging for Clinical Management of Pancreatic Carcinoma and Its Precursor Lesions. Mol Imaging. 2017;16:1536012117709384.
pubmed: 28627323
pmcid: 5480625
Niu J, Li Z. The roles of integrin αvβ6 in cancer. Cancer Lett. 2017;403:128e137.
Tummers WS, Willmann JK, Bonsing BA, Vahrmeijer AL, Gambhir SS, Swijnenburg RJ. Advances in Diagnostic and Intraoperative Molecular Imaging of Pancreatic Cancer. Pancreas. 2018;47:675–89.
pubmed: 29894417
pmcid: 6003672
Horan GS, Wood S, Ona V, Li DJ, Lukashev ME, Weinreb PH, et al. Partial inhibition of integrin αvβ6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med. 2008;177:56–65.
pubmed: 17916809
Altmann A, Sauter M, Roesch S, Mier W, Warta R, Debus J, et al. Identification of a Novel ITGα
pubmed: 28468949
Roesch S, Lindner T, Sauter M, Loktev A, Flechsig P, Müller M, et al. Comparison of the RGD Motif-Containing α
pubmed: 29674419
Müller M, Altmann A, Sauter M, Lindner T, Jäger D, Rathke H, et al. Preclinical evaluation of peptide-based radiotracers for integrin αvβ6-positive pancreatic carcinoma. Nuklearmedizin. 2019;58:309–18.
pubmed: 31075798
Flechsig P, Lindner T, Loktev A, Roesch S, Mier W, Sauter M, et al. PET/CT Imaging of NSCLC with a α
pubmed: 30671741
Kimura RH, Wang L, Shen B, Huo L, Tummers W, Filipp FV, et al. Evaluation of integrin α
pubmed: 31611594
pmcid: 6791878
Hausner SH, Bold RJ, Cheuy LY, Chew HK, Daly ME, Davis RA, et al. Preclinical Development and First-in-Human Imaging of the Integrin αvβ6 with [
pubmed: 30401687
Lukey PT, Coello C, Gunn R, Parker C, Wilson FJ, Saleem A, et al. Clinical quantification of the integrin αvβ6 by [
pubmed: 31814068
Maher TM, Simpson JK, Porter JC, Wilson FJ, Chan R, Eames R, et al. A positron emission tomography imaging study to confirm target engagement in the lungs of patients with idiopathic pulmonary fibrosis following a single dose of a novel inhaled αvβ6 integrin inhibitor. Respirat Res. 2020;21:75.
Notni J, Šimeček J, Hermann P, Wester HJ. TRAP, a powerful and versatile framework for gallium-68 radiopharmaceuticals. Chemistry. 2011;17:14718–22.
pubmed: 22147338
Maltsev OV, Marelli UK, Kapp TG, Di Leva FS, Di Maro S, Nieberler M, et al. Stable Peptides Instead of Stapled Peptides: Highly Potent α
Färber SF, Wurzer A, Reichart F, Beck R, Kessler H, Wester HJ, et al. Therapeutic Radiopharmaceuticals Targeting Integrin αvβ6. ACS Omega. 2018;3:2428–36.
pubmed: 30023833
pmcid: 6045477
Notni J, Pohle K, Wester HJ. Be spoilt for choice with radiolabeled RGD peptides: Preclinical evaluation of
pubmed: 22995902
Notni J, Steiger K, Hoffmann F, Reich D, Kapp TG, Rechenmacher F, et al. Complementary, Selective PET-Imaging of Integrin Subtypes α
pubmed: 26635338
Kapp TG, Di Leva FS, Notni J, Räder AFB, Fottner M, Reichart F, et al. N-methylation of isoDGR peptides: discovery of a selective α5β1-integrin ligand as a potent tumor imaging agent. J Med Chem. 2018;61:2490–9.
pubmed: 29489355
Quigley NG, Tomassi S, Di Leva FS, Di Maro S, Richter F, Steiger K, et al. Click-chemistry (CuAAC) trimerization of an αvβ6-integrin targeting Ga-68-peptide: Enhanced contrast for in-vivo PET imaging of human lung adenocarcinoma xenografts. ChemBioChem. 2020;21:2836–43.
pubmed: 32359011
pmcid: 7586803
Quigley NG, Steiger K, Richter F, Weichert W, Hoberück S, Kotzerke J, et al. Tracking a TGF-β activator in vivo: sensitive PET imaging of αvβ8-integrin with the Ga-68-labeled cyclic RGD octapeptide trimer Ga-68-Triveoctin. EJNMMI Res. 2020;10:133.
pubmed: 33128636
pmcid: 7603442
Böhmer VI, Szymanski V, Feringa BL, Elsinga PH. Multivalent probes in molecular imaging: Reality or future? Trends Mol Med. 2021;27:379–93.
pubmed: 33436332
Kapp TG, Rechenmacher F, Neubauer S, Notni J, Räder AFB, Fottner M, et al. A Comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Sci Rep. 2017;7:39805.
pubmed: 28074920
pmcid: 5225454
Notni J, Šimeček J, Wester HJ. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: unique characteristics and applications. ChemMedChem. 2014;9:1107–15.
pubmed: 24700633
Notni J, Hermann P, Havlíčková J, Kotek J, Kubíček V, Plutnar J, et al. A triazacyclononane-based bifunctional phosphinate ligand for the preparation of multimeric 68Ga tracers for positron emission tomography. Chem Eur J. 2010;16:7174–85.
pubmed: 20461824
Notni J, Wester HJ. A practical guide on the synthesis of metal chelates for molecular imaging and therapy by means of click chemistry. Chem Eur J. 2016;22:11500–8.
pubmed: 27333118
Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, et al. Glycosylated RGD-Containing Peptides: Tracer for Tumor Targeting and Angiogenesis Imaging with Improved Biokinetics. J Nucl Med. 2001;42:326–36.
pubmed: 11216533
Hausner SH, Bauer N, Hu LY, Knight LM, Sutcliffe JL. The Effect of Bi-Terminal PEGylation of an Integrin-αvβ6 Targeted
pubmed: 25814519
Corning PA. The re-emergence of “emergence”: A venerable concept in search of a theory. Complexity. 2002;7:18–30.
Maschauer S, Einsiedel J, Reich D, Hübner H, Gmeiner P, Wester HJ, et al. Theranostic value of multimers: Lessons learned from trimerization of neurotensin receptor ligands and other targeting vectors. Pharmaceuticals. 2017;10:29.
pmcid: 5374433
Strobel O, Büchler MW. Pancreatic cancer: FDG-PET is not useful in early pancreatic cancer diagnosis. Nat Rev Gastroenterol Hepatol. 2013;4:203–5.