Prediction of coating thickness for polyelectrolyte multilayers via machine learning.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
21 09 2021
Historique:
received: 29 03 2021
accepted: 06 09 2021
entrez: 22 9 2021
pubmed: 23 9 2021
medline: 23 9 2021
Statut: epublish

Résumé

Layer-by-layer (LbL) deposition method of polyelectrolytes is a versatile way of developing functional nanoscale coatings. Even though the mechanisms of LbL film development are well-established, currently there are no predictive models that can link film components with their final properties. The current health crisis has shown the importance of accelerated development of biomedical solutions such as antiviral coatings, and the implementation of machine learning methodologies for coating development can enable achieving this. In this work, using literature data and newly generated experimental results, we first analyzed the relative impact of 23 coating parameters on the coating thickness. Next, a predictive model has been developed using aforementioned parameters and molecular descriptors of polymers from the DeepChem library. Model performance was limited because of insufficient number of data points in the training set, due to the scarce availability of data in the literature. Despite this limitation, we demonstrate, for the first time, utilization of machine learning for prediction of LbL coating properties. It can decrease the time necessary to obtain functional coating with desired properties, as well as decrease experimental costs and enable the fast first response to crisis situations (such as pandemics) where coatings can positively contribute. Besides coating thickness, which was selected as an output value in this study, machine learning approach can be potentially used to predict functional properties of multilayer coatings, e.g. biocompatibility, cell adhesive, antibacterial, antiviral or anti-inflammatory properties.

Identifiants

pubmed: 34548560
doi: 10.1038/s41598-021-98170-x
pii: 10.1038/s41598-021-98170-x
pmc: PMC8455527
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

18702

Informations de copyright

© 2021. The Author(s).

Références

Biomacromolecules. 2014 Apr 14;15(4):1399-407
pubmed: 24564819
Polymers (Basel). 2020 Aug 28;12(9):
pubmed: 32872246
J Colloid Interface Sci. 2019 Oct 1;553:720-733
pubmed: 31254870
ACS Nano. 2019 Jun 25;13(6):6151-6169
pubmed: 31124656
J Biomed Mater Res A. 2012 Feb;100(2):518-26
pubmed: 22125271
Macromol Rapid Commun. 2015 May;36(10):866-79
pubmed: 25800245
Macromol Biosci. 2009 Aug 11;9(8):776-85
pubmed: 19340816
Biomaterials. 2005 Jun;26(16):3353-61
pubmed: 15603831
Chem Rev. 2016 Dec 14;116(23):14828-14867
pubmed: 27960272
Adv Mater. 2010 Jan 26;22(4):441-67
pubmed: 20217734
Sensors (Basel). 2019 Feb 07;19(3):
pubmed: 30736483
IET Nanobiotechnol. 2017 Dec;11(8):903-908
pubmed: 29155388
Soft Matter. 2007 Jun 19;3(7):804-816
pubmed: 32900071
Molecules. 2019 Jun 06;24(11):
pubmed: 31174307
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12531-5
pubmed: 12237412
Langmuir. 2005 Sep 13;21(19):8785-92
pubmed: 16142961
Langmuir. 2004 Apr 13;20(8):3362-70
pubmed: 15875870
Langmuir. 2009 Mar 3;25(5):3255-9
pubmed: 19437787
Chem Mater. 2012 Mar 13;24(5):854-869
pubmed: 25076811
Biomacromolecules. 2004 Mar-Apr;5(2):284-94
pubmed: 15002986
Langmuir. 2009 Dec 15;25(24):13809-19
pubmed: 20560550
Biomaterials. 2009 Sep;30(27):4463-70
pubmed: 19520425
Biomacromolecules. 2009 Feb 9;10(2):433-42
pubmed: 19199579

Auteurs

Varvara Gribova (V)

Inserm UMR_S 1121, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000, Strasbourg, France.
Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000, Strasbourg, France.

Anastasiia Navalikhina (A)

PRESTE, 75011, Paris, France.

Oleksandr Lysenko (O)

PRESTE, 75011, Paris, France.

Cynthia Calligaro (C)

SPARTHA Medical, 67100, Strasbourg, France.

Eloïse Lebaudy (E)

Inserm UMR_S 1121, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000, Strasbourg, France.
Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000, Strasbourg, France.

Lucie Deiber (L)

SPARTHA Medical, 67100, Strasbourg, France.

Bernard Senger (B)

Inserm UMR_S 1121, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000, Strasbourg, France.
Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000, Strasbourg, France.

Philippe Lavalle (P)

Inserm UMR_S 1121, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000, Strasbourg, France.
Université de Strasbourg, Faculté de Chirurgie Dentaire, 67000, Strasbourg, France.
SPARTHA Medical, 67100, Strasbourg, France.

Nihal Engin Vrana (NE)

SPARTHA Medical, 67100, Strasbourg, France. evrana@sparthamedical.eu.

Classifications MeSH