A de novo CSDE1 variant causing neurodevelopmental delay, intellectual disability, neurologic and psychiatric symptoms in a child of consanguineous parents.
anxiety
developmental delay
intellectual disability
muscle weakness
pathological laughter and cry
Journal
American journal of medical genetics. Part A
ISSN: 1552-4833
Titre abrégé: Am J Med Genet A
Pays: United States
ID NLM: 101235741
Informations de publication
Date de publication:
01 2022
01 2022
Historique:
revised:
02
07
2021
received:
02
04
2021
accepted:
21
08
2021
pubmed:
15
9
2021
medline:
8
4
2022
entrez:
14
9
2021
Statut:
ppublish
Résumé
CSDE1 encodes the cytoplasmic cold shock domain-containing protein E1 (CSDE1), which is highly conserved across species and functions as an RNA-binding protein involved in translationally coupled mRNA turnover. CSDE1 displays a bidirectional role: promoting and repressing the translation of RNAs but also increasing and decreasing the abundance of RNAs. Preclinical studies highlighted an involvement of CSDE1 in different forms of cancer. Moreover, CSDE1 is highly expressed in human embryonic stem cells and plays a role in neuronal migration and differentiation. A genome-wide association study suggested CSDE1 as a potential autism-spectrum disorder risk gene. A multicenter next generation sequencing approach unraveled likely causative heterozygous variants in CSDE1 in 18 patients, identifying a new autism spectrum disorder-related syndrome consisting of autism, intellectual disability, and neurodevelopmental delay. Since then, no further patients with CSDE1 variants have been reported in the literature. Here, we report a 9.5-year-old girl from a consanguineous family of Turkish origin suffering from profound delayed speech and motor development, moderate intellectual disability, neurologic and psychiatric symptoms as well as hypoplasia of corpus callosum and mildly reduced brain volume on brain magnetic resonance imaging associated with a recurrent de novo mutation in CSDE1 (c.367C > T; p.R123*) expanding the phenotypical spectrum associated with pathogenic CSDE1 variants.
Identifiants
pubmed: 34519148
doi: 10.1002/ajmg.a.62494
doi:
Substances chimiques
CSDE1 protein, human
0
DNA-Binding Proteins
0
RNA-Binding Proteins
0
Types de publication
Case Reports
Multicenter Study
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
283-291Subventions
Organisme : Wellcome Trust
ID : 201064/Z/16/Z
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N010035/1
Pays : United Kingdom
Organisme : NHGRI NIH HHS
ID : UM1 HG008900
Pays : United States
Organisme : Medical Research Council
ID : MR/N025431/2
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 109915/Z/15/Z
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N025431/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/V009346/1
Pays : United Kingdom
Organisme : CIHR
ID : FDN-167281
Pays : Canada
Organisme : NEI NIH HHS
ID : R01 HG009141
Pays : United States
Organisme : Medical Research Council
ID : G1000848
Pays : United Kingdom
Informations de copyright
© 2021 The Authors. American Journal of Medical Genetics Part A published by Wiley Periodicals LLC.
Références
Braegger, C., Jenni, O. G., Konrad, D., & Molinari, L. (2011). Neue Wachstumskurven für die Schweiz. Paediatrica, 22(1), 9-11.
Chang, T. C., Yamashita, A., Chen, C. Y., Yamashita, Y., Zhu, W., Durdan, S., Kahvejian, A., Sonenberg, N., & Shyu, A. B. (2004). UNR, a new partner of poly(A)-binding protein, plays a key role in translationally coupled mRNA turnover mediated by the c-fos major coding-region determinant. Genes & Development, 18(16), 2010-2023. https://doi.org/10.1101/gad.1219104
El Khouri, E., Ghoumid, J., Haye, D., Giuliano, F., Drevillon, L., Briand-Suleau, A., De La Grange, P., Nau, V., Gaillon, T., Bienvenu, T., Jacquemin-Sablon, H., Goossens, M., Amselem, S., & Giurgea, I. (2021). Wnt/β-catenin pathway and cell adhesion deregulation in CSDE1-related intellectual disability and autism spectrum disorders. Molecular Psychiatry. https://doi.org/10.1038/s41380-021-01072-7
Guo, A. X., Cui, J. J., Wang, L. Y., & Yin, J. Y. (2020). The role of CSDE1 in translational reprogramming and human diseases. Cell Communication and Signaling: CCS, 18(1), 14. https://doi.org/10.1186/s12964-019-0496-2
Guo, H., Li, Y., Shen, L., Wang, T., Jia, X., Liu, L., Xu, T., Ou, M., Hoekzema, K., Wu, H., Gillentine, M. A., Liu, C., Ni, H., Peng, P., Zhao, R., Zhang, Y., Phornphutkul, C., Stegmann, A., Prada, C. E., … Xia, K. (2019). Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission. Science Advances, 5(9), eaax2166. https://doi.org/10.1126/sciadv.aax2166
Ju Lee, H., Bartsch, D., Xiao, C., Guerrero, S., Ahuja, G., Schindler, C., Moresco, J. J., Yates, J. R., Gebauer, F., Bazzi, H., Dieterich, C., Kurian, L., & Vilchez, D. (2017). A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nature Communications, 8(1), 1456. https://doi.org/10.1038/s41467-017-01744-5
Kakumani, P. K., Harvey, L. M., Houle, F., Guitart, T., Gebauer, F., & Simard, M. J. (2020). CSDE1 controls gene expression through the miRNA-mediated decay machinery. Life Science Alliance, 3(4), e201900632. https://doi.org/10.26508/lsa.201900632
Kobayashi, H., Kawauchi, D., Hashimoto, Y., Ogata, T., & Murakami, F. (2013). The control of precerebellar neuron migration by RNA-binding protein Csde1. Neuroscience, 253, 292-303. https://doi.org/10.1016/j.neuroscience.2013.08.055
Kromeyer-Hauschild, K., Wabitsch, M., Kunze, D., Geller, F., Geiß, H. C., Hesse, V., von Hippel, A., Jaeger, U., Johnsen, D., Korte, W., Menner, K., Müller, G., Müller, J. M., Niemann-Pilatus, A., Remer, T., Schaefer, F., Wittchen, H. U., Zabransky, S., Zellner, K., … Hebebrand, J. (2001). Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschrift Kinderheilkunde, 149, 807-818. https://doi.org/10.1007/s001120170107
Monies, D., Abouelhoda, M., Assoum, M., Moghrabi, N., Rafiullah, R., Almontashiri, N., Alowain, M., Alzaidan, H., Alsayed, M., Subhani, S., Cupler, E., Faden, M., Alhashem, A., Qari, A., Chedrawi, A., Aldhalaan, H., Kurdi, W., Khan, S., Rahbeeni, Z., … Alkuraya, F. S. (2019). Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. American Journal of Human Genetics, 104(6), 1182-1201. https://doi.org/10.1016/j.ajhg.2019.04.011
Voigt, M., Fusch, C., Olbertz, D., Hartmann, K., Rochow, N., Renken, C., & Schneider, K. T. M. (2006). Analysis of the neonatal collective in the Federal Republic of Germany 12th report. Presentation of detailed percentiles for the body measurement of newborns. Geburtshilfe und Frauenheilkunde., 66(10), 956-970. https://doi.org/10.1055/s-2006-924458
Wegiel, J., Flory, M., Kaczmarski, W., Brown, W. T., Chadman, K., Wisniewski, T., Nowicki, K., Kuchna, I., Ma, S. Y., & Wegiel, J. (2017). Partial agenesis and hypoplasia of the corpus callosum in idiopathic autism. Journal of Neuropathology and Experimental Neurology, 76(3), 225-237. https://doi.org/10.1093/jnen/nlx003
Xia, K., Guo, H., Hu, Z., Xun, G., Zuo, L., Peng, Y., Wang, K., He, Y., Xiong, Z., Sun, L., Pan, Q., Long, Z., Zou, X., Li, X., Li, W., Xu, X., Lu, L., Liu, Y., Hu, Y., … Zhang, F. (2014). Common genetic variants on 1p13.2 associate with risk of autism. Molecular Psychiatry, 19(11), 1212-1219. https://doi.org/10.1038/mp.2013.146
Youn, J. Y., Dunham, W. H., Hong, S. J., Knight, J., Bashkurov, M., Chen, G. I., Bagci, H., Rathod, B., MacLeod, G., Eng, S., Angers, S., Morris, Q., Fabian, M., Côté, J. F., & Gingras, A. C. (2018). High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Molecular Cell, 69(3), 517-532.e11. https://doi.org/10.1016/j.molcel.2017.12.020