X-ray Fluorescence Techniques for Element Abundance Analysis in Wine.


Journal

ACS omega
ISSN: 2470-1343
Titre abrégé: ACS Omega
Pays: United States
ID NLM: 101691658

Informations de publication

Date de publication:
07 Sep 2021
Historique:
received: 25 05 2021
accepted: 30 07 2021
entrez: 13 9 2021
pubmed: 14 9 2021
medline: 14 9 2021
Statut: epublish

Résumé

The elemental composition has been extensively used to characterize wine and to find correlations with environmental and winemaking factors. Although X-ray fluorescence (XRF) techniques offer many advantages, they have been rarely used for wine analysis. Here, we show the comparison of wine elemental composition results obtained by total reflection X-ray fluorescence (TXRF) and energy dispersive X-ray fluorescence (EDXRF) for elements K, Ca, Mn, Fe, Cu, Zn, Br, Rb, and Sr. The results obtained by TXRF and EDXRF have been additionally verified by inductively coupled plasma-mass spectrometry. The important analytical features of XRF techniques in wine science have been described, the preservation of volatile elements (e.g., Br) being one of their main advantages. In addition, we have shown that XRF techniques offer an optimal analytical approach for building large data sets containing highly reliable and reproducible results of elemental abundances in wines, corresponding soils, and grape juice. Such data sets are especially important for the geographic authentication of wine. This has been shown for 37 Austrian and Croatian wines collected together with respective soils from selected wine regions. The element abundances in soil reflect in a large portion in grape juice and finished wine suggesting that the contribution of the soil, that is, the plant uptake capacity expressed as

Identifiants

pubmed: 34514236
doi: 10.1021/acsomega.1c02731
pmc: PMC8427642
doi:

Types de publication

Journal Article

Langues

eng

Pagination

22643-22654

Informations de copyright

© 2021 The Authors. Published by American Chemical Society.

Déclaration de conflit d'intérêts

The authors declare no competing financial interest.

Références

Food Chem. 2014 Jun 15;153:414-23
pubmed: 24491748
J Plant Physiol. 2012 Jul 15;169(11):1023-31
pubmed: 22583647
Food Chem X. 2019 Feb 12;1:100007
pubmed: 31432007
Molecules. 2020 May 30;25(11):
pubmed: 32486273
Anal Bioanal Chem. 2002 Sep;374(2):314-22
pubmed: 12324855
J Agric Food Chem. 2003 Feb 12;51(4):856-60
pubmed: 12568538
Food Chem. 2019 Jan 1;270:273-280
pubmed: 30174046
Anal Chim Acta. 2009 Oct 12;652(1-2):154-60
pubmed: 19786176
Talanta. 2013 Jul 15;111:147-55
pubmed: 23622538
Talanta. 2008 Sep 15;76(5):1113-8
pubmed: 18761163
Food Chem. 2019 Nov 15;298:125033
pubmed: 31260969
J Agric Food Chem. 2003 Jul 30;51(16):4788-98
pubmed: 14705914
J Agric Food Chem. 2011 Jul 27;59(14):7854-65
pubmed: 21671663

Auteurs

Jasmina Obhod Aš (J)

Rud̵er Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.

Vladivoj Valković (V)

Rud̵er Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.

Andrija Vinković (A)

Rud̵er Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.

Davorin Sudac (D)

Rud̵er Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.

Ivana Čanad Ija (I)

University of Zagreb, Trg Republike Hrvatske 14, Zagreb 10000, Croatia.

Tihana Pensa (T)

University of Zagreb, Trg Republike Hrvatske 14, Zagreb 10000, Croatia.

Željka Fiket (Ž)

Rud̵er Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.

Anna Turyanskaya (A)

TU Wien, Atominstitut, Stadionallee 2, Wien 1020, Austria.

Thomas Bretschneider (T)

TU Wien, Atominstitut, Stadionallee 2, Wien 1020, Austria.

Christoph Wilhelmer (C)

TU Wien, Atominstitut, Stadionallee 2, Wien 1020, Austria.

Gerelmaa Gunchin (G)

TU Wien, Atominstitut, Stadionallee 2, Wien 1020, Austria.

Peter Kregsamer (P)

TU Wien, Atominstitut, Stadionallee 2, Wien 1020, Austria.

Peter Wobrauschek (P)

TU Wien, Atominstitut, Stadionallee 2, Wien 1020, Austria.

Christina Streli (C)

TU Wien, Atominstitut, Stadionallee 2, Wien 1020, Austria.

Classifications MeSH