Metabolic flexibility during sleep.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
08 09 2021
Historique:
received: 31 05 2021
accepted: 17 08 2021
entrez: 9 9 2021
pubmed: 10 9 2021
medline: 12 11 2021
Statut: epublish

Résumé

Known as metabolic flexibility, oxidized substrate is selected in response to changes in the nutritional state. Sleep imposes an extended duration of fasting, and oxidized substrates during sleep were assumed to progressively shift from carbohydrate to fat, thereby gradually decreasing the respiratory quotient (RQ). Contrary to this assumption, whole-room indirect calorimetry with improved time resolution revealed that RQ re-ascended prior to awakening, and nadir of RQ in non-obese young adults occurred earlier in women than men after bedtime. The transient decrease in RQ during sleep was blunted in metabolically inflexible men with smaller amplitude of diurnal rhythm in RQ. Similarly, the effect of 10 years difference in age on RQ became significant during sleep; the decrease in RQ during sleep was blunted in older subjects. Inter-individual difference in RQ become apparent during sleep, and it might serve as a window to gain insight into the early-stage pathogenesis of metabolic inflexibility.

Identifiants

pubmed: 34497320
doi: 10.1038/s41598-021-97301-8
pii: 10.1038/s41598-021-97301-8
pmc: PMC8426397
doi:

Substances chimiques

Blood Glucose 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

17849

Informations de copyright

© 2021. The Author(s).

Références

Kelley, D. E. & Mandarino, L. J. Hyperglycemia normalizes insulin-stimulated skeletal muscle glucose oxidation and storage in noninsulin-dependent diabetes mellitus. J. Clin. Investig. 86, 1999–2007 (1990).
pubmed: 2123890 pmcid: 329837 doi: 10.1172/JCI114935
Kelley, D. E., Goodpaster, B., Wing, R. R. & Simoneau, J.-A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol. 277, E1130–E1141 (1999).
pubmed: 10600804
Kelley, D. E. & Mandarino, J. Fuel selection in human skeletal muscle in insulin resistance: Reexamination. Diabetes 49, 677–683 (2000).
pubmed: 10905472 doi: 10.2337/diabetes.49.5.677
Galgani, J. E., Moro, C. & Ravussin, E. Metabolic flexibility and insulin resistance. Am. J. Physiol. 295, E1009–E1017 (2008).
Goodpaster, B. H. & Sparks, L. M. Metabolic flexibility in health and disease. Cell Metab. 25, 1027–1036 (2017).
pubmed: 28467922 pmcid: 5513193 doi: 10.1016/j.cmet.2017.04.015
Mynatt, R. L. et al. The RNA binding protein HuR influences skeletal muscle metabolic flexibility in rodents and humans. Metabolism 97, 40–49 (2019).
pubmed: 31129047 pmcid: 6624076 doi: 10.1016/j.metabol.2019.05.010
Smith, R. L., Soeters, M. R., Wüst, R. C. I. & Houtkoor, R. H. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr. Rev. 39, 489–517 (2018).
pubmed: 29697773 pmcid: 6093334 doi: 10.1210/er.2017-00211
Kayaba, M. et al. Energy metabolism differs between sleep stages and begins to increase prior to awakening. Metabolism 69, 14–23 (2017).
pubmed: 28285643 doi: 10.1016/j.metabol.2016.12.016
Zhang, S. et al. Subacute ingestion of caffeine and oolong tea increases fat oxidation without affecting energy expenditure and sleep architecture: A randomized, placebo-controlled, double-blinded cross-over trial. Nutrients 12, 3671 (2020).
pmcid: 7760339 doi: 10.3390/nu12123671
Duffy, J. F., Dijk, D. J., Klerman, E. B. & Czeisler, C. A. Later endogenous circadian temperature nadir relative to an earlier wake time older people. Am. J. Physiol. 275, R1478–R1487 (1998).
pubmed: 9791064
Baker, F. C. et al. Sleep and 24 hour body temperatures: A comparison in young men, naturally cycling women and women taking hormonal contraceptives. J. Physiol. 530, 565–574 (2001).
pubmed: 11158285 pmcid: 2278431 doi: 10.1111/j.1469-7793.2001.0565k.x
Cain, S. W. et al. Sex differences in phase angle of entrainment and melatonin amplitude in humans. J. Biol. Rhythms 25, 288–296 (2010).
pubmed: 20679498 pmcid: 3792014 doi: 10.1177/0748730410374943
Duffy, J. F. et al. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc. Natl. Acad. Sci. U.S.A. 108, 15602–15608 (2011).
pubmed: 21536890 pmcid: 3176605 doi: 10.1073/pnas.1010666108
Zitting, K. M. et al. Human resting energy expenditure varies with circadian phase. Curr. Biol. 28, 3685–3690 (2018).
pubmed: 30416064 pmcid: 6300153 doi: 10.1016/j.cub.2018.10.005
Boivin, D. B., Shechter, A., Boudreau, P., Begum, E. A. & Ying-Kin, N. M. K. N. Diurnal and circadian variation of sleep and alertness in men vs naturally cycling women. Proc. Natl. Acad. Sci. U.S.A. 113, 10980–10985 (2016).
pubmed: 27621470 pmcid: 5047150 doi: 10.1073/pnas.1524484113
Ohayon, M. M., Carskadon, M. A., Guilleminault, C. & Vitiello, M. V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep 27, 1255–1273 (2004).
pubmed: 15586779 doi: 10.1093/sleep/27.7.1255
Tokuyama, K., Ogata, H., Katayose, Y. & Satoh, M. Algorithm for transient response of whole body indirect calorimeter: Deconvolution with a regularization parameter. J. Appl. Physiol. 106, 640–650 (2009).
pubmed: 19008487 doi: 10.1152/japplphysiol.90718.2008
Iwayama, K. et al. Exercise before breakfast increases 24-h fat oxidation in female subjects. PLoS One 12, e0180472 (2017).
pubmed: 28692687 pmcid: 5503250 doi: 10.1371/journal.pone.0180472
Iwayama, K. et al. Exercise increases 24-h fat oxidation only when it is performed before breakfast. EBioMedicine 2, 2003–2009 (2015).
pubmed: 26844280 pmcid: 4703705 doi: 10.1016/j.ebiom.2015.10.029
Iwayama, K. et al. Effects of exercise before breakfast on 24-h fat oxidation and the plasma fatty acid profile. Metab. Open 8, 1000672 (2020).
doi: 10.1016/j.metop.2020.100067
Ogata, H. et al. Effect of skipping breakfast for six days on energy metabolism and diurnal rhythm of blood glucose. Am. J. Clin. Nutr. 110, 41–52 (2019).
pubmed: 31095288 doi: 10.1093/ajcn/nqy346
Tanaka, Y. et al. Effect of a single bout of exercise on clock gene expression in human leukocyte. J. Appl. Physiol. 128, 847–854 (2020).
pubmed: 32134712 doi: 10.1152/japplphysiol.00891.2019
Zhang, S. et al. Changes in sleeping energy metabolism and thermoregulation during menstrual cycle. Physiol. Rep. 8, e14353 (2020).
pubmed: 31981319 pmcid: 6981303 doi: 10.14814/phy2.14353
Park, I. et al. Exercise improves the quality of slow wave sleep by increasing slow wave stability. Sci. Rep. 11, 4410 (2021).
pubmed: 33627708 pmcid: 7904822 doi: 10.1038/s41598-021-83817-6
Park, I. et al. Effects of body pillow use on sleeping posture and sleep architecture in young healthy subjects. Sleep Med. Res. 12, 1–5 (2021).
doi: 10.17241/smr.2021.00878
Ferrannini, E. The theoretical basis of indirect calorimetry: A review. Metabolism 37, 287–301 (1988).
pubmed: 3278194 doi: 10.1016/0026-0495(88)90110-2
Seol, J. et al. Distinct effects of orexin receptor antagonist and GABAA agonist on sleep and physical/cognitive functions after forced awakening. Proc. Natl. Acad. Sci. U.S.A. 116, 24353–24358 (2019).
pubmed: 31712421 pmcid: 6883838 doi: 10.1073/pnas.1907354116
Rodbard, D. Continuous glucose monitoring: A review of successes, challenges, and opportunities. Diabetes Technol. Ther. 18, 203–213 (2016).
doi: 10.1089/dia.2015.0417
Aalling, N. N., Nedergaard, M. & DiNuzzo, M. Cerebral metabolic changes during sleep. Curr. Neurol. Neurosci. Rep. 18, 57 (2018).
pubmed: 30014344 pmcid: 6688614 doi: 10.1007/s11910-018-0868-9
Voderholzer, U., Al-Shajlawi, A., Weske, G., Feige, B. & Riemann, D. Are there gender differences in objective and subjective sleep measures? A study of insomniacs and healthy controls. Depress Anxiety 17, 162–172 (2003).
pubmed: 12768650 doi: 10.1002/da.10101
Linsell, C. R., Lightman, S. L., Mullem, P. E., Brown, M. J. & Causon, R. C. Circadian rhythms of epinephrine and norepinephrine in man. J. Clin. Endocrinol. Metab. 60, 1210–1215 (1985).
pubmed: 3998066 doi: 10.1210/jcem-60-6-1210
Sakharova, A. A. et al. Role of growth hormone in regulating lipolysis, proteolysis, and hepatic glucose production during fasting. J. Clin. Endocrinol. Metab. 93, 2755–2759 (2008).
pubmed: 18413425 pmcid: 2453052 doi: 10.1210/jc.2008-0079
Engström, B. E., Karlsson, F. A. & Wide, L. Gender differences in diurnal growth hormone and epinephrine values in young adults during ambulation. Clin. Chem. 45, 1235–1239 (1999).
pubmed: 10430789 doi: 10.1093/clinchem/45.8.1235
Oster, H. et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr. Rev. 38, 3–45 (2017).
pubmed: 27749086 doi: 10.1210/er.2015-1080
Moore, R. Y. A clock for the ages. Science 284, 2102–2103 (1999).
pubmed: 10409066 doi: 10.1126/science.284.5423.2102
Czeisler, C. A. et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284, 2177–2181 (1999).
pubmed: 10381883 doi: 10.1126/science.284.5423.2177
Gunn, P. J., Middleton, B., Davies, S. K., Revell, V. L. & Skene, D. J. Sex differences in the circadian profiles of melatonin and cortisol in plasma and urine matrices under constant routine conditions. Chronobiol. Int. 33, 39–50 (2016).
pubmed: 26731571 pmcid: 4819823 doi: 10.3109/07420528.2015.1112396
Tapia, M. et al. Melatonin relations with respiratory quotient weaken on acute exposure to high altitude. Front. Physiol. 9, 798 (2018).
pubmed: 30008674 pmcid: 6034204 doi: 10.3389/fphys.2018.00798
Liu, K. et al. Melatonin reduces intramuscular fat deposition by promoting lipolysis and increasing mitochondrial function. J. Lipid Res. 60, 767–782 (2019).
pubmed: 30552289 doi: 10.1194/jlr.M087619
Yang, W., Tang, K., Wang, Y., Zhang, Y. & Zan, L. Melatonin promotes triacylglycerol accumulation via MMT2 receptor during differentiation in bovine intramuscular preadipocyte. Sci. Rep. 7, 15080 (2017).
pubmed: 29118419 pmcid: 5678110 doi: 10.1038/s41598-017-12780-y
Zalatan, F., Krause, J. A. & Blask, D. E. Inhibition of isoproterenol-induced lipolysis in rat inguinal adipocytes in vitro by physiological melatonin via a receptor-mediated mechanism. Endocrinology 142, 3783–3790 (2001).
pubmed: 11517154 doi: 10.1210/endo.142.9.8378
Campbell, S. S., Gillin, J. C., Kripke, D. F., Erikson, P. & Clopton, P. Gender differences in the circadian temperature rhythms of healthy elderly subjects: Relationships to sleep quality. Sleep 12, 529–536 (1989).
pubmed: 2595176
Luboshitzky, R., Zabari, Z., Shen-Orr, Z., Herer, P. & Lavie, P. Disruption of the nocturnal testosterone rhythm by sleep fragmentation in normal men. J. Clin. Endocrinol. Metab. 86, 1134–1139 (2001).
pubmed: 11238497 doi: 10.1210/jcem.86.3.7296
Høst, C. et al. Independent effects of testosterone on lipid oxidation and VLDL-TG production. A randomized, double-blind, placebo-controlled, crossover study. Diabetes 62, 1409–1416 (2013).
pubmed: 23193189 pmcid: 3636625 doi: 10.2337/db12-0440
Licinio, J. et al. Sex differences in circulating human leptin pulse amplitude: Clinical implications. J. Clin. Endocrinol. Metab. 83, 4140–4147 (1998).
pubmed: 9814504
Nicolaidis, S. Metabolic mechanism of wakefulness (and hunger) and sleep (and satiety): Role of adenosine triphosphate and hypocretin and other peptides. Metabolism 55, S24–S29 (2006).
pubmed: 16979423 doi: 10.1016/j.metabol.2006.07.009
Ravussin, E. & Swinburn, B. A. Pathophysiology of obesity. Lancet 340, 404–408 (1992).
pubmed: 1353565 doi: 10.1016/0140-6736(92)91480-V
Westerterp, K. R. Food quotient, respiratory quotient, and energy balance. Am. J. Clin. Nutr. 57, 759S-764S (1993).
pubmed: 8475893 doi: 10.1093/ajcn/57.5.759S
Ellis, A. C., Hyatt, T. C., Gower, B. A. & Hunter, G. R. Respiratory quotient predicts fat mass gain in premenopausal women. Obesity (Silver Spring) 18, 2255–2259 (2010).
doi: 10.1038/oby.2010.96
Weinsier, R. L. et al. Metabolic predictors of obesity. Contribution of resting energy expenditure, thermic effect of food, and fuel utilization to four-year weight gain of post-obese and never-obese women. J. Clin. Investig. 95, 980–985 (1995).
pubmed: 7883999 pmcid: 441430 doi: 10.1172/JCI117807
Keys, A., Taylor, H. L. & Grande, F. Basal metabolism and age of adult man. Metabolism 22, 579–587 (1973).
pubmed: 4696902 doi: 10.1016/0026-0495(73)90071-1
Cagnacci, A., Elliott, J. A. & Yen, S. S. Melatonin: A major regulator of the circadian rhythm of core temperature in humans. J. Clin. Endocrinol. Metab. 75, 447–452 (1992).
pubmed: 1639946
Garfinkel, D., Laudon, M. & Zisapel, N. Improvement of sleep quality in elderly people by controlled-release melatonin. Lancet 346, 541–544 (1995).
pubmed: 7658780 doi: 10.1016/S0140-6736(95)91382-3
Mendelson, W. B., Gillin, J. C., Dawson, S. D., Lewy, A. J. & Wyatt, R. J. Effects of melatonin and propranolol on sleep of the rat. Brain Res. 201, 240–244 (1980).
pubmed: 7417837 doi: 10.1016/0006-8993(80)90793-3
Wolden-Hanson, T. et al. Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 141, 487–497 (2000).
pubmed: 10650927 doi: 10.1210/endo.141.2.7311
Fernández-Verdejo, R. et al. Direct relationship between metabolic flexibility measured during glucose clamp and prolonged fast in men. Obesity (Silver Spring) 28, 1110–1116 (2020).
doi: 10.1002/oby.22783
Galgani, J. E. & Fernández-Verdejo, R. Pathophysiological role of metabolic flexibility on metabolic health. Obes. Rev. 22, e13131 (2021).
pubmed: 32815226 doi: 10.1111/obr.13131
Speakman, J. R. et al. The international atomic energy agency international doubly labelled water database: Aims, scope and procedures. Ann. Nutr. Metab. 75, 114–118 (2019).
pubmed: 31743893 doi: 10.1159/000503668
Chen, K. Y. et al. Room indirect calorimetry operating and reporting standards (RICORS 1.0): A guide to conducting and reporting human whole-room calorimeter studies. Obesity 28, 1613–1625 (2020).
pubmed: 32841524 doi: 10.1002/oby.22928

Auteurs

Simeng Zhang (S)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.

Yoshiaki Tanaka (Y)

Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.

Asuka Ishihara (A)

Ph.D. Program in Human Biology, Doctoral Program in School of Integrative and Global Majors (SIGMA), University of Tsukuba, Ibaraki, Japan.

Akiko Uchizawa (A)

Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.

Insung Park (I)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.

Kaito Iwayama (K)

Faculty of Budo and Sport Studies, Tenri University, Nara, Japan.

Hitomi Ogata (H)

Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.

Katsuhiko Yajima (K)

Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan.

Naomi Omi (N)

Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Makoto Satoh (M)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.

Masashi Yanagisawa (M)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.

Hiroyuki Sagayama (H)

Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Kumpei Tokuyama (K)

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan. tokuyama.kumpei.gf@u.tsukuba.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH