Metabolic flexibility during sleep.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
08 09 2021
08 09 2021
Historique:
received:
31
05
2021
accepted:
17
08
2021
entrez:
9
9
2021
pubmed:
10
9
2021
medline:
12
11
2021
Statut:
epublish
Résumé
Known as metabolic flexibility, oxidized substrate is selected in response to changes in the nutritional state. Sleep imposes an extended duration of fasting, and oxidized substrates during sleep were assumed to progressively shift from carbohydrate to fat, thereby gradually decreasing the respiratory quotient (RQ). Contrary to this assumption, whole-room indirect calorimetry with improved time resolution revealed that RQ re-ascended prior to awakening, and nadir of RQ in non-obese young adults occurred earlier in women than men after bedtime. The transient decrease in RQ during sleep was blunted in metabolically inflexible men with smaller amplitude of diurnal rhythm in RQ. Similarly, the effect of 10 years difference in age on RQ became significant during sleep; the decrease in RQ during sleep was blunted in older subjects. Inter-individual difference in RQ become apparent during sleep, and it might serve as a window to gain insight into the early-stage pathogenesis of metabolic inflexibility.
Identifiants
pubmed: 34497320
doi: 10.1038/s41598-021-97301-8
pii: 10.1038/s41598-021-97301-8
pmc: PMC8426397
doi:
Substances chimiques
Blood Glucose
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
17849Informations de copyright
© 2021. The Author(s).
Références
Kelley, D. E. & Mandarino, L. J. Hyperglycemia normalizes insulin-stimulated skeletal muscle glucose oxidation and storage in noninsulin-dependent diabetes mellitus. J. Clin. Investig. 86, 1999–2007 (1990).
pubmed: 2123890
pmcid: 329837
doi: 10.1172/JCI114935
Kelley, D. E., Goodpaster, B., Wing, R. R. & Simoneau, J.-A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol. 277, E1130–E1141 (1999).
pubmed: 10600804
Kelley, D. E. & Mandarino, J. Fuel selection in human skeletal muscle in insulin resistance: Reexamination. Diabetes 49, 677–683 (2000).
pubmed: 10905472
doi: 10.2337/diabetes.49.5.677
Galgani, J. E., Moro, C. & Ravussin, E. Metabolic flexibility and insulin resistance. Am. J. Physiol. 295, E1009–E1017 (2008).
Goodpaster, B. H. & Sparks, L. M. Metabolic flexibility in health and disease. Cell Metab. 25, 1027–1036 (2017).
pubmed: 28467922
pmcid: 5513193
doi: 10.1016/j.cmet.2017.04.015
Mynatt, R. L. et al. The RNA binding protein HuR influences skeletal muscle metabolic flexibility in rodents and humans. Metabolism 97, 40–49 (2019).
pubmed: 31129047
pmcid: 6624076
doi: 10.1016/j.metabol.2019.05.010
Smith, R. L., Soeters, M. R., Wüst, R. C. I. & Houtkoor, R. H. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr. Rev. 39, 489–517 (2018).
pubmed: 29697773
pmcid: 6093334
doi: 10.1210/er.2017-00211
Kayaba, M. et al. Energy metabolism differs between sleep stages and begins to increase prior to awakening. Metabolism 69, 14–23 (2017).
pubmed: 28285643
doi: 10.1016/j.metabol.2016.12.016
Zhang, S. et al. Subacute ingestion of caffeine and oolong tea increases fat oxidation without affecting energy expenditure and sleep architecture: A randomized, placebo-controlled, double-blinded cross-over trial. Nutrients 12, 3671 (2020).
pmcid: 7760339
doi: 10.3390/nu12123671
Duffy, J. F., Dijk, D. J., Klerman, E. B. & Czeisler, C. A. Later endogenous circadian temperature nadir relative to an earlier wake time older people. Am. J. Physiol. 275, R1478–R1487 (1998).
pubmed: 9791064
Baker, F. C. et al. Sleep and 24 hour body temperatures: A comparison in young men, naturally cycling women and women taking hormonal contraceptives. J. Physiol. 530, 565–574 (2001).
pubmed: 11158285
pmcid: 2278431
doi: 10.1111/j.1469-7793.2001.0565k.x
Cain, S. W. et al. Sex differences in phase angle of entrainment and melatonin amplitude in humans. J. Biol. Rhythms 25, 288–296 (2010).
pubmed: 20679498
pmcid: 3792014
doi: 10.1177/0748730410374943
Duffy, J. F. et al. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc. Natl. Acad. Sci. U.S.A. 108, 15602–15608 (2011).
pubmed: 21536890
pmcid: 3176605
doi: 10.1073/pnas.1010666108
Zitting, K. M. et al. Human resting energy expenditure varies with circadian phase. Curr. Biol. 28, 3685–3690 (2018).
pubmed: 30416064
pmcid: 6300153
doi: 10.1016/j.cub.2018.10.005
Boivin, D. B., Shechter, A., Boudreau, P., Begum, E. A. & Ying-Kin, N. M. K. N. Diurnal and circadian variation of sleep and alertness in men vs naturally cycling women. Proc. Natl. Acad. Sci. U.S.A. 113, 10980–10985 (2016).
pubmed: 27621470
pmcid: 5047150
doi: 10.1073/pnas.1524484113
Ohayon, M. M., Carskadon, M. A., Guilleminault, C. & Vitiello, M. V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep 27, 1255–1273 (2004).
pubmed: 15586779
doi: 10.1093/sleep/27.7.1255
Tokuyama, K., Ogata, H., Katayose, Y. & Satoh, M. Algorithm for transient response of whole body indirect calorimeter: Deconvolution with a regularization parameter. J. Appl. Physiol. 106, 640–650 (2009).
pubmed: 19008487
doi: 10.1152/japplphysiol.90718.2008
Iwayama, K. et al. Exercise before breakfast increases 24-h fat oxidation in female subjects. PLoS One 12, e0180472 (2017).
pubmed: 28692687
pmcid: 5503250
doi: 10.1371/journal.pone.0180472
Iwayama, K. et al. Exercise increases 24-h fat oxidation only when it is performed before breakfast. EBioMedicine 2, 2003–2009 (2015).
pubmed: 26844280
pmcid: 4703705
doi: 10.1016/j.ebiom.2015.10.029
Iwayama, K. et al. Effects of exercise before breakfast on 24-h fat oxidation and the plasma fatty acid profile. Metab. Open 8, 1000672 (2020).
doi: 10.1016/j.metop.2020.100067
Ogata, H. et al. Effect of skipping breakfast for six days on energy metabolism and diurnal rhythm of blood glucose. Am. J. Clin. Nutr. 110, 41–52 (2019).
pubmed: 31095288
doi: 10.1093/ajcn/nqy346
Tanaka, Y. et al. Effect of a single bout of exercise on clock gene expression in human leukocyte. J. Appl. Physiol. 128, 847–854 (2020).
pubmed: 32134712
doi: 10.1152/japplphysiol.00891.2019
Zhang, S. et al. Changes in sleeping energy metabolism and thermoregulation during menstrual cycle. Physiol. Rep. 8, e14353 (2020).
pubmed: 31981319
pmcid: 6981303
doi: 10.14814/phy2.14353
Park, I. et al. Exercise improves the quality of slow wave sleep by increasing slow wave stability. Sci. Rep. 11, 4410 (2021).
pubmed: 33627708
pmcid: 7904822
doi: 10.1038/s41598-021-83817-6
Park, I. et al. Effects of body pillow use on sleeping posture and sleep architecture in young healthy subjects. Sleep Med. Res. 12, 1–5 (2021).
doi: 10.17241/smr.2021.00878
Ferrannini, E. The theoretical basis of indirect calorimetry: A review. Metabolism 37, 287–301 (1988).
pubmed: 3278194
doi: 10.1016/0026-0495(88)90110-2
Seol, J. et al. Distinct effects of orexin receptor antagonist and GABAA agonist on sleep and physical/cognitive functions after forced awakening. Proc. Natl. Acad. Sci. U.S.A. 116, 24353–24358 (2019).
pubmed: 31712421
pmcid: 6883838
doi: 10.1073/pnas.1907354116
Rodbard, D. Continuous glucose monitoring: A review of successes, challenges, and opportunities. Diabetes Technol. Ther. 18, 203–213 (2016).
doi: 10.1089/dia.2015.0417
Aalling, N. N., Nedergaard, M. & DiNuzzo, M. Cerebral metabolic changes during sleep. Curr. Neurol. Neurosci. Rep. 18, 57 (2018).
pubmed: 30014344
pmcid: 6688614
doi: 10.1007/s11910-018-0868-9
Voderholzer, U., Al-Shajlawi, A., Weske, G., Feige, B. & Riemann, D. Are there gender differences in objective and subjective sleep measures? A study of insomniacs and healthy controls. Depress Anxiety 17, 162–172 (2003).
pubmed: 12768650
doi: 10.1002/da.10101
Linsell, C. R., Lightman, S. L., Mullem, P. E., Brown, M. J. & Causon, R. C. Circadian rhythms of epinephrine and norepinephrine in man. J. Clin. Endocrinol. Metab. 60, 1210–1215 (1985).
pubmed: 3998066
doi: 10.1210/jcem-60-6-1210
Sakharova, A. A. et al. Role of growth hormone in regulating lipolysis, proteolysis, and hepatic glucose production during fasting. J. Clin. Endocrinol. Metab. 93, 2755–2759 (2008).
pubmed: 18413425
pmcid: 2453052
doi: 10.1210/jc.2008-0079
Engström, B. E., Karlsson, F. A. & Wide, L. Gender differences in diurnal growth hormone and epinephrine values in young adults during ambulation. Clin. Chem. 45, 1235–1239 (1999).
pubmed: 10430789
doi: 10.1093/clinchem/45.8.1235
Oster, H. et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr. Rev. 38, 3–45 (2017).
pubmed: 27749086
doi: 10.1210/er.2015-1080
Moore, R. Y. A clock for the ages. Science 284, 2102–2103 (1999).
pubmed: 10409066
doi: 10.1126/science.284.5423.2102
Czeisler, C. A. et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284, 2177–2181 (1999).
pubmed: 10381883
doi: 10.1126/science.284.5423.2177
Gunn, P. J., Middleton, B., Davies, S. K., Revell, V. L. & Skene, D. J. Sex differences in the circadian profiles of melatonin and cortisol in plasma and urine matrices under constant routine conditions. Chronobiol. Int. 33, 39–50 (2016).
pubmed: 26731571
pmcid: 4819823
doi: 10.3109/07420528.2015.1112396
Tapia, M. et al. Melatonin relations with respiratory quotient weaken on acute exposure to high altitude. Front. Physiol. 9, 798 (2018).
pubmed: 30008674
pmcid: 6034204
doi: 10.3389/fphys.2018.00798
Liu, K. et al. Melatonin reduces intramuscular fat deposition by promoting lipolysis and increasing mitochondrial function. J. Lipid Res. 60, 767–782 (2019).
pubmed: 30552289
doi: 10.1194/jlr.M087619
Yang, W., Tang, K., Wang, Y., Zhang, Y. & Zan, L. Melatonin promotes triacylglycerol accumulation via MMT2 receptor during differentiation in bovine intramuscular preadipocyte. Sci. Rep. 7, 15080 (2017).
pubmed: 29118419
pmcid: 5678110
doi: 10.1038/s41598-017-12780-y
Zalatan, F., Krause, J. A. & Blask, D. E. Inhibition of isoproterenol-induced lipolysis in rat inguinal adipocytes in vitro by physiological melatonin via a receptor-mediated mechanism. Endocrinology 142, 3783–3790 (2001).
pubmed: 11517154
doi: 10.1210/endo.142.9.8378
Campbell, S. S., Gillin, J. C., Kripke, D. F., Erikson, P. & Clopton, P. Gender differences in the circadian temperature rhythms of healthy elderly subjects: Relationships to sleep quality. Sleep 12, 529–536 (1989).
pubmed: 2595176
Luboshitzky, R., Zabari, Z., Shen-Orr, Z., Herer, P. & Lavie, P. Disruption of the nocturnal testosterone rhythm by sleep fragmentation in normal men. J. Clin. Endocrinol. Metab. 86, 1134–1139 (2001).
pubmed: 11238497
doi: 10.1210/jcem.86.3.7296
Høst, C. et al. Independent effects of testosterone on lipid oxidation and VLDL-TG production. A randomized, double-blind, placebo-controlled, crossover study. Diabetes 62, 1409–1416 (2013).
pubmed: 23193189
pmcid: 3636625
doi: 10.2337/db12-0440
Licinio, J. et al. Sex differences in circulating human leptin pulse amplitude: Clinical implications. J. Clin. Endocrinol. Metab. 83, 4140–4147 (1998).
pubmed: 9814504
Nicolaidis, S. Metabolic mechanism of wakefulness (and hunger) and sleep (and satiety): Role of adenosine triphosphate and hypocretin and other peptides. Metabolism 55, S24–S29 (2006).
pubmed: 16979423
doi: 10.1016/j.metabol.2006.07.009
Ravussin, E. & Swinburn, B. A. Pathophysiology of obesity. Lancet 340, 404–408 (1992).
pubmed: 1353565
doi: 10.1016/0140-6736(92)91480-V
Westerterp, K. R. Food quotient, respiratory quotient, and energy balance. Am. J. Clin. Nutr. 57, 759S-764S (1993).
pubmed: 8475893
doi: 10.1093/ajcn/57.5.759S
Ellis, A. C., Hyatt, T. C., Gower, B. A. & Hunter, G. R. Respiratory quotient predicts fat mass gain in premenopausal women. Obesity (Silver Spring) 18, 2255–2259 (2010).
doi: 10.1038/oby.2010.96
Weinsier, R. L. et al. Metabolic predictors of obesity. Contribution of resting energy expenditure, thermic effect of food, and fuel utilization to four-year weight gain of post-obese and never-obese women. J. Clin. Investig. 95, 980–985 (1995).
pubmed: 7883999
pmcid: 441430
doi: 10.1172/JCI117807
Keys, A., Taylor, H. L. & Grande, F. Basal metabolism and age of adult man. Metabolism 22, 579–587 (1973).
pubmed: 4696902
doi: 10.1016/0026-0495(73)90071-1
Cagnacci, A., Elliott, J. A. & Yen, S. S. Melatonin: A major regulator of the circadian rhythm of core temperature in humans. J. Clin. Endocrinol. Metab. 75, 447–452 (1992).
pubmed: 1639946
Garfinkel, D., Laudon, M. & Zisapel, N. Improvement of sleep quality in elderly people by controlled-release melatonin. Lancet 346, 541–544 (1995).
pubmed: 7658780
doi: 10.1016/S0140-6736(95)91382-3
Mendelson, W. B., Gillin, J. C., Dawson, S. D., Lewy, A. J. & Wyatt, R. J. Effects of melatonin and propranolol on sleep of the rat. Brain Res. 201, 240–244 (1980).
pubmed: 7417837
doi: 10.1016/0006-8993(80)90793-3
Wolden-Hanson, T. et al. Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 141, 487–497 (2000).
pubmed: 10650927
doi: 10.1210/endo.141.2.7311
Fernández-Verdejo, R. et al. Direct relationship between metabolic flexibility measured during glucose clamp and prolonged fast in men. Obesity (Silver Spring) 28, 1110–1116 (2020).
doi: 10.1002/oby.22783
Galgani, J. E. & Fernández-Verdejo, R. Pathophysiological role of metabolic flexibility on metabolic health. Obes. Rev. 22, e13131 (2021).
pubmed: 32815226
doi: 10.1111/obr.13131
Speakman, J. R. et al. The international atomic energy agency international doubly labelled water database: Aims, scope and procedures. Ann. Nutr. Metab. 75, 114–118 (2019).
pubmed: 31743893
doi: 10.1159/000503668
Chen, K. Y. et al. Room indirect calorimetry operating and reporting standards (RICORS 1.0): A guide to conducting and reporting human whole-room calorimeter studies. Obesity 28, 1613–1625 (2020).
pubmed: 32841524
doi: 10.1002/oby.22928