Microbes mediating the sulfur cycle in the Atlantic Ocean and their link to chemolithoautotrophy.
Journal
Environmental microbiology
ISSN: 1462-2920
Titre abrégé: Environ Microbiol
Pays: England
ID NLM: 100883692
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
revised:
18
08
2021
received:
02
12
2020
accepted:
03
09
2021
pubmed:
8
9
2021
medline:
18
3
2022
entrez:
7
9
2021
Statut:
ppublish
Résumé
Only about 10%-30% of the organic matter produced in the epipelagic layers reaches the dark ocean. Under these limiting conditions, reduced inorganic substrates might be used as an energy source to fuel prokaryotic chemoautotrophic and/or mixotrophic activity. The aprA gene encodes the alpha subunit of the adenosine-5'-phosphosulfate (APS) reductase, present in sulfate-reducing (SRP) and sulfur-oxidizing prokaryotes (SOP). The sulfur-oxidizing pathway can be coupled to inorganic carbon fixation via the Calvin-Benson-Bassham cycle. The abundances of aprA and cbbM, encoding RuBisCO form II (the key CO
Identifiants
pubmed: 34490972
doi: 10.1111/1462-2920.15759
doi:
Substances chimiques
Sulfur
70FD1KFU70
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7152-7167Informations de copyright
© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Références
Acinas, S.G., Sánchez, P., Salazar, G., Cornejo-Castillo, F.M., Sebastián, M., Logares, R., et al. (2021) Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun Biol 4: 604.
Anantharaman, K., Breier, J.A., Sheik, C.S., and Dick, G.J. (2013) Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc Natl Acad Sci U S A 110: 330-335.
Andersen, K.S., Kirkegaard, R.H., Karst, S.M., and Albertsen, M. (2018) ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv: 299537.
Aoki, M., Kakiuchi, R., Yamaguchi, T., Takai, K., Inagaki, F., and Imachi, H. (2015) Phylogenetic diversity of aprA genes in subseafloor sediments on the northwestern Pacific margin off Japan. Microbes Environ 30: 276-280.
Arrieta, J.M., Mayol, E., Hansman, R.L., Herndl, G.J., Dittmar, T., and Duarte, C.M. (2015) Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348: 331-333.
Azam, F., Fenchel, T., Field, J., Gray, J., Meyer-Reil, L., and Thingstad, F. (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10: 257-263.
Baltar, F., Arístegui, J., Sintes, E., Gasol, J.M., Reinthaler, T., and Herndl, G.J. (2010) Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic. Geophys Res Lett 37: L09602.
Bianchi, D., Weber, T.S., Kiko, R., and Deutsch, C. (2018) Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat Geosci 11: 263-268.
Blazejak, A., Kuever, J., Erseus, C., Amann, R., and Dubilier, N. (2006) Phylogeny of 16S rRNA, ribulose 1,5-bisphosphate carboxylase/oxygenase, and adenosine 5′-phosphosulfate reductase genes from gamma- and alphaproteobacterial symbionts in gutless marine worms (oligochaeta) from Bermuda and The Bahamas. Appl Environ Microbiol 72: 5527-5536.
Blazejak, A., and Schippers, A. (2011) Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing prokaryotes in marine sediments of the Peru continental margin and the Black Sea. Front Microbiol 2: 253.
Brussaard, C.P. (2004) Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol 70: 1506-1513.
Buesseler, K.O., and Boyd, P.W. (2009) Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol Oceanogr 54: 1210-1232.
Buesseler, K.O., Lamborg, C.H., Boyd, P.W., Lam, P.J., Trull, T.W., Bidigare, R.R., et al. (2007) Revisiting carbon flux through the ocean's twilight zone. Science 316: 567-570.
Callahan, B.J., Sankaran, K., Fukuyama, J.A., McMurdie, P.J., and Holmes, S.P. (2016). Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research, 5: 1492.
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J., and Holmes, S.P. (2016b) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13: 581-583.
Canfield, D.E., Erik, K., and Bo, T. (2005) The sulfur cycle. In Advances in Marine Biology, Vol. 48, Canfield, D.E., Kristensen, E., and Thamdrup, B. (eds), pp. 313-381. London: Academic Press.
Clifford, E.L., Varela, M.M., De Corte, D., Bode, A., Ortiz, V., Herndl, G.J., and Sintes, E. (2019) Taurine is a major carbon and energy source for marine prokaryotes in the North Atlantic Ocean off the Iberian Peninsula. Microb Ecol 78: 299-312.
Durham, B.P., Boysen, A.K., Carlson, L.T., Groussman, R.D., Heal, K.R., Cain, K.R., et al. (2019) Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat Microbiol 4: 1706-1715.
Eren, A.M., Maignien, L., Sul, W.J., Murphy, L.G., Grim, S.L., Morrison, H.G., and Sogin, M.L. (2013) Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 4: 1111-1119.
Frank, A.H., Garcia, J.A.L., Herndl, G.J., and Reinthaler, T. (2016) Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic deep water. Environ Microbiol 18: 2052-2063.
Frank, K.L., Rogers, D.R., Olins, H.C., Vidoudez, C., and Girguis, P.R. (2013) Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents. ISME J 7: 1391-1401.
Fritz, G., Büchert, T., Huber, H., Stetter, K.O., and Kroneck, P.M.H. (2000) Adenylylsulfate reductases from archaea and bacteria are 1:1 αβ-heterodimeric iron-sulfur flavoenzymes - high similarity of molecular properties emphasizes their central role in sulfur metabolism. FEBS Lett 473: 63-66.
Giorgio, P.A.d., Bird, D.F., Prairie, Y.T., and Planas, D. (1996) Flow cytometric determination of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnol Oceanogr 41: 783-789.
Han, Y., Gonnella, G., Adam, N., Schippers, A., Burkhardt, L., Kurtz, S., et al. (2018) Hydrothermal chimneys host habitat-specific microbial communities: analogues for studying the possible impact of mining seafloor massive sulfide deposits. Sci Rep 8: 10386.
Hansell, D.A. (2013) Recalcitrant dissolved organic carbon fractions. Ann Rev Mar Sci 5: 421-445.
Herndl, G.J., and Reinthaler, T. (2013) Microbial control of the dark end of the biological pump. Nat Geosci 6: 718-724.
Herndl, G.J., Reinthaler, T., Teira, E., van Aken, H., Veth, C., Pernthaler, A., and Pernthaler, J. (2005) Contribution of archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol 71: 2303-2309.
Hipp, W.M., Pott, A.S., Thum-Schmitz, N., Faath, I., Dahl, C., and Trüper, H.G. (1997) Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiology 143: 2891-2902.
Huang, Y., Niu, B., Gao, Y., Fu, L., and Li, W. (2010) CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics 26: 680-682.
Hügler, M., Gärtner, A., and Imhoff, J.F. (2010) Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiol Ecol 73: 526-537.
Imhoff, J.F. (2014) The family Chromatiaceae. In The Prokaryotes: Gammaproteobacteria, Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., and Thompson, F. (eds). Berlin, Heidelberg: Springer, pp. 151-178.
Kappler, U., and Dahl, C. (2001) Enzymology and molecular biology of prokaryotic sulfite oxidation1. FEMS Microbiol Lett 203: 1-9.
Kennedy, J., Flemer, B., Jackson, S.A., Morrissey, J.P., O'Gara, F., and Dobson, A.D. (2014) Evidence of a putative deep sea specific microbiome in marine sponges. PLoS One 9: e91092.
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547-1549.
Lampreia, J., Pereira, A.S., and Moura, J.G. (1994) [16] Adenylylsulfate reductases from sulfate-reducing bacteria. In Methods in Enzymology, Vol. 243, pp. 241-260. New York: Academic Press.
Larsson, J. (2020) eulerr: Area-proportional Euler and Venn diagrams with ellipses.
Letunic, I., and Bork, P. (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47: W256-W259.
Li, G., Lai, Q., Liu, X., Sun, F., Du, Y., Li, G., and Shao, Z. (2013) Maricoccus atlantica gen. nov. sp. nov., isolated from deep sea sediment of the Atlantic Ocean. Antonie Van Leeuwenhoek 104: 1073-1081.
Li, Y., Jing, H., Xia, X., Cheung, S., Suzuki, K., and Liu, H. (2018) Metagenomic insights into the microbial community and nutrient cycling in the Western subarctic Pacific Ocean. Front Microbiol 9: 623.
Longhurst, A.R. (2007) . In Ecological Geography of the Sea, 2nd ed, Longhurst, A.R. (ed). Burlington: Academic Press.
Lozupone, C., Lladser, M.E., Knights, D., Stombaugh, J., and Knight, R. (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5: 169-172.
Mawji, E., Schlitzer, R., Dodas, E.M., Abadie, C., Abouchami, W., Anderson, R.F., et al. (2015) The GEOTRACES intermediate data product 2014. Mar Chem 177: 1-8.
McMurdie, P.J., and Holmes, S.P. (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8: e61217.
Meyer, B., and Kuever, J. (2007a) Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Appl Environ Microbiol 73: 7664-7679.
Meyer, B., and Kuever, J. (2007b) Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5′-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes-origin and evolution of the dissimilatory sulfate-reduction pathway. Microbiology 153: 2026-2044.
Meyer, B., and Kuever, J. (2008) Homology modeling of dissimilatory APS reductases (AprBA) of sulfur-oxidizing and sulfate-reducing prokaryotes. PLoS One 3: e1514.
Morris, R.M., Rappe, M.S., Connon, S.A., Vergin, K.L., Siebold, W.A., Carlson, C.A., and Giovannoni, S.J. (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420: 806-810.
Muck, S., De Corte, D., Clifford, E.L., Bayer, B., Herndl, G.J., and Sintes, E. (2019) Niche differentiation of aerobic and anaerobic ammonia oxidizers in a high latitude deep oxygen minimum zone. Front Microbiol 10: 2141.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Simpson, G.L., Solymos, P. et al. (2018) Vegan: community ecology package. URL https://cran.r-project.org/web/packages/vegan/.
Pham, V.D., Konstantinidis, K.T., Palden, T., and DeLong, E.F. (2008) Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Environ Microbiol 10: 2313-2330.
Pjevac, P., Meier, D.V., Markert, S., Hentschker, C., Schweder, T., Becher, D., et al. (2018) Metaproteogenomic profiling of microbial communities colonizing actively venting hydrothermal chimneys. Front Microbiol 9: 680.
Ploug, H., Kühl, M., Buchholz-Cleven, B., and Jørgensen, B.B. (1997) Anoxic aggregates - an ephemeral phenomenon in the pelagic environment? Aquat Microb Ecol 13: 285-294.
Radford-Knoery, J., German, C.R., Charlou, J.-L., Donval, J.-P., and Fouquet, Y. (2001) Distribution and behavior of dissolved hydrogen sulfide in hydrothermal plumes. Limnol Oceanogr 46: 461-464.
Reinthaler, T., Sintes, E., and Herndl, G.J. (2008) Dissolved organic matter and bacterial production and respiration in the sea-surface microlayer of the open Atlantic and the western Mediterranean Sea. Limnol Oceanogr 53: 122-136.
Reinthaler, T., van Aken, H.M., and Herndl, G.J. (2010) Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic's interior. Deep-Sea Res II Top Stud Oceanogr 57: 1572-1580.
Saitou, N., and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425.
Santoro, A.E., Saito, M.A., Goepfert, T.J., Lamborg, C.H., Dupont, C.L., DiTullio, G.R. (2017). Thaumarchaeal ecotype distributions across the equatorial Pacific Ocean and their potential roles in nitrification and sinking flux attenuation. Limnol Oceanogr 62: 1984-2003.
Shanks, A.L., and Reeder, M.L. (1993) Reducing microzones and sulfide production in marine snow. Mar Ecol Prog Ser 96: 43-47.
Sievert, S.M., Kiene, R.P., and Schulz-Vogt, H.N. (2007) The sulfur cycle. Oceanography 20: 117-123.
Silver, M.W., Shanks, A.L., and Trent, J.D. (1978) Marine snow: microplankton habitat and source of small-scale patchiness in pelagic populations. Science 201: 371-373.
Sintes, E., Bergauer, K., De Corte, D., Yokokawa, T., and Herndl, G.J. (2013) Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol 15: 1647-1658.
Sintes, E., De Corte, D., Haberleitner, E., and Herndl, G.J. (2016) Geographic distribution of archaeal ammonia oxidizing ecotypes in the Atlantic Ocean. Front Microbiol 7: 77.
Smith, D.P., Nicora, C.D., Carini, P., Lipton, M.S., Norbeck, A.D., Smith, R.D., and Giovannoni, S.J. (2016) Proteome remodeling in response to sulfur limitation in "Candidatus Pelagibacter ubique". mSystems 1: e00068-16.
Spietz, R.L., Lundeen, R.A., Zhao, X., Nicastro, D., Ingalls, A.E., and Morris, R.M. (2019b) Heterotrophic carbon metabolism and energy acquisition in Candidatus Thioglobus singularis strain PS1, a member of the SUP05 clade of marine Gammaproteobacteria. Environ Microbiol 21: 2391-2401.
Spietz, R.L., Marshall, K.T., Zhao, X., and Morris, R.M. (2019a) Complete genome sequence of "Candidatus Thioglobus sp." strain NP1, an open-ocean isolate from the SUP05 clade of marine Gammaproteobacteria. Microbiol Resour Announc 8: e00097-19.
Swan, B.K., Martinez-Garcia, M., Preston, C.M., Sczyrba, A., Woyke, T., Lamy, D., et al. (2011) Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333: 1296-1300.
Tabita, F.R., Satagopan, S., Hanson, T.E., Kreel, N.E., and Scott, S.S. (2008) Distinct form I, II, III, and IV rubisco proteins from the three kingdoms of life provide clues about rubisco evolution and structure/function relationships. J Exp Bot 59: 1515-1524.
Tripp, H.J., Kitner, J.B., Schwalbach, M.S., Dacey, J.W.H., Wilhelm, L.J., and Giovannoni, S.J. (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452: 741-744.
Ulloa, O., Canfield, D.E., DeLong, E.F., Letelier, R.M., and Stewart, F.J. (2012) Microbial oceanography of anoxic oxygen minimum zones. Proc Natl Acad Sci U S A 109: 15996-16003.
Wagner, S., Schubotz, F., Kaiser, K., Hallmann, C., Waska, H., Rossel, P.E., et al. (2020) Soothsaying DOM: a current perspective on the future of oceanic dissolved organic carbon. Front Mar Sci 7: 341.
Walsh, D.A., Zaikova, E., Howes, C.G., Song, Y.C., Wright, J.J., Tringe, S.G., et al. (2009) Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 326: 578-582.
Watanabe, T., Kojima, H., Takano, Y., and Fukui, M. (2013) Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene. Syst Appl Microbiol 36: 436-443.