The tempo of greening in the European Alps: Spatial variations on a common theme.

European Alps NDVI climate change greening mountain ecosystems remote sensing

Journal

Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746

Informations de publication

Date de publication:
11 2021
Historique:
received: 04 05 2021
accepted: 13 07 2021
pubmed: 4 9 2021
medline: 3 11 2021
entrez: 3 9 2021
Statut: ppublish

Résumé

The long-term increase in satellite-based proxies of vegetation cover is a well-documented response of seasonally snow-covered ecosystems to climate warming. However, observed greening trends are far from uniform, and substantial uncertainty remains concerning the underlying causes of this spatial variability. Here, we processed surface reflectance of the moderate resolution imaging spectroradiometer (MODIS) to investigate trends and drivers of changes in the annual peak values of the Normalized Difference Vegetation Index (NDVI). Our study focuses on above-treeline ecosystems in the European Alps. NDVI changes in these ecosystems are highly sensitive to land cover and biomass changes and are marginally affected by anthropogenic disturbances. We observed widespread greening for the 2000-2020 period, a pattern that is consistent with the overall increase in summer temperature. At the local scale, the spatial variability of greening was mainly due to the preferential response of north-facing slopes between 1900 and 2400 m. Using high-resolution imagery, we noticed that the presence of screes and outcrops locally magnified this response. At the regional scale, we identified hotspots of greening where vegetation cover is sparser than expected given the elevation and exposure. Most of these hotspots experienced delayed snow melt and green-up dates in recent years. We conclude that the ongoing greening in the Alps primarily reflects the high responsiveness of sparsely vegetated ecosystems that are able to benefit the most from temperature and water-related habitat amelioration above treeline.

Identifiants

pubmed: 34478202
doi: 10.1111/gcb.15820
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5614-5628

Informations de copyright

© 2021 John Wiley & Sons Ltd.

Références

Anderson, K., Fawcett, D., Cugulliere, A., Benford, S., Jones, D., & Leng, R. L. (2020). Vegetation expansion in the subnival Hindu Kush Himalaya. Global Change Biology, 26(3), 1608-1625. https://doi.org/10.1111/gcb.14919
André, G., Lavergne, S., & Carcaillet, C. (2020). Unsuspected prevalent tree occurrences in high elevation sky-islands of the western Alps. bioRxiv. https://doi.org/10.1101/2020.07.08.193300
Asam, S., Callegari, M., Matiu, M., Fiore, G., De Gregorio, L., Jacob, A., Menzel, A., Zebisch, M., & Notarnicola, C. (2018). Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the Alps-An Earth observation-based analysis. Remote Sensing, 10(11). https://doi.org/10.3390/rs10111757
Avanzi, F., Ercolani, G., Gabellani, S., Cremonese, E., Pogliotti, P., Filippa, G., Morra di Cella, U., Ratto, S., Stevenin, H., Cauduro, M., & Juglair, S. (2020). Learning about precipitation lapse rates from snow course data improves water balance modeling. Hydrology and Earth System Sciences, 25(4), 2109-2131. https://doi.org/10.5194/hess-25-2109-2021
Beniston, M. (2006). Mountain weather and climate: A general overview and a focus on climatic change in the Alps. Hydrobiologia, 562, 3-16. https://doi.org/10.1007/s10750-005-1802-0
Berner, L. T., Massey, R., Jantz, P., Forbes, B. C., Macias-Fauria, M., Myers-Smith, I., Kumpula, T., Gauthier, G., Andreu-Hayles, L., Gaglioti, B. V., Burns, P., Zetterberg, P., D’Arrigo, R., & Goetz, S. J. (2020). Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-18479-5
Böhner, J., & Antonić, O. (2009). Land-surface parameters specific to topo-climatology. Developments in Soil Science, 33, 195-226.
Callaghan, T. V., Bergholm, F., Christensen, T. R., Jonasson, C., Kokfelt, U., & Johansson, M. (2010). A new climate era in the sub-Arctic: Accelerating climate changes and multiple impacts. Geophysical Research Letters, 37. https://doi.org/10.1029/2009gl042064
Cannone, N., Sgorbati, S., & Guglielmin, M. (2007). Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and the Environment, 5(7), 360-364. https://doi.org/10.1890/1540-9295(2007)5[360:UIOCCO]2.0.CO;2
Carlson, B. Z., Corona, M. C., Dentant, C., Bonet, R., Thuiller, W., & Choler, P. (2017). Observed long-term greening of alpine vegetation-a case study in the French Alps. Environmental Research Letters, 12(11). https://doi.org/10.1088/1748-9326/aa84bd
Choler, P. (2015). Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences, 12(12), 3885-3897. https://doi.org/10.5194/bg-12-3885-2015
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., & Jones, P. D. (2018). An ensemble version of the E-OBS temperature and precipitation data sets. Journal of Geophysical Research-Atmospheres, 123(17), 9391-9409. https://doi.org/10.1029/2017jd028200
Corona-Lozada, M. C., Morin, S., & Choler, P. (2019). Drought offsets the positive effect of summer heat waves on the canopy greenness of mountain grasslands. Agricultural and Forest Meteorology, 276. https://doi.org/10.1016/j.agrformet.2019.107617
Cortés, J., Mahecha, M. D., Reichstein, M., Myneni, R. B., Chen, C., & Brenning, A. (2021). Where are global vegetation greening and browning trends significant? Geophysical Research Letters, 48(6), e2020GL091496. https://doi.org/10.1029/2020GL091496
Dunn, A. H., & de Beurs, K. M. (2011). Land surface phenology of North American mountain environments using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 115(5), 1220-1233. https://doi.org/10.1016/j.rse.2011.01.005
Durand, Y., Giraud, G., Laternser, M., Etchevers, P., Mérindol, L., & Lesaffre, B. (2009). Reanalysis of 47 years of climate in the French Alps (1958-2005): Climatology and trends for snow cover. Journal of Applied Meteorology and Climatology, 48(12), 2487-2512. https://doi.org/10.1175/2009jamc1810.1
Duveiller, G., Hooker, J., & Cescatti, A. (2018). The mark of vegetation change on Earth's surface energy balance. Nature Communications, 9. https://doi.org/10.1038/s41467-017-02810-8
EEA. (2009). Regional climate change adaptation. The Alps facing the challenge of changing water resources. European Environment Agency.
Filippa, G., Cremonese, E., Galvagno, M., Isabellon, M., Bayle, A., Choler, P., Carlson, B. Z., Gabellani, S., Morra di Cella, U., & Migliavacca, M. (2019). Climatic drivers of greening trends in the Alps. Remote Sensing, 11(21). https://doi.org/10.3390/rs11212527
Fontana, F., Rixen, C., Jonas, T., Aberegg, G., & Wunderle, S. (2008). Alpine grassland phenology as seen in AVHRR, VEGETATION, and MODIS NDVI time series-A comparison with in situ measurements. Sensors, 8(4), 2833-2853. https://doi.org/10.3390/s8042833
Forzieri, G., Alkama, R., Miralles, D. G., & Cescatti, A. (2017). Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science, 356(6343), 1140-1144. https://doi.org/10.1126/science.aal1727
Francon, L., Corona, C., Till-Bottraud, I., Choler, P., Carlson, B. Z., Charrier, G., Améglio, T., Morin, S., Eckert, N., Roussel, E., Lopez-Saez, J., & Stoffel, M. (2020). Assessing the effects of earlier snow melt-out on alpine shrub growth: The sooner the better? Ecological Indicators, 115. https://doi.org/10.1016/j.ecolind.2020.106455
Frei, C., & Isotta, F. A. (2019). Ensemble spatial precipitation analysis from rain gauge data: Methodology and application in the European Alps. Journal of Geophysical Research-Atmospheres, 124(11), 5757-5778. https://doi.org/10.1029/2018jd030004
Gehrig-Fasel, J., Guisan, A., & Zimmermann, N. E. (2007). Tree line shifts in the Swiss Alps: Climate change or land abandonment? Journal of Vegetation Science, 18(4), 571-582. https://doi.org/10.1111/j.1654-1103.2007.tb02571.x
Giaccone, E., Luoto, M., Vittoz, P., Guisan, A., Mariethoz, G., & Lambiel, C. (2019). Influence of microclimate and geomorphological factors on alpine vegetation in the Western Swiss Alps. Earth Surface Processes and Landforms, 44(15), 3093-3107. https://doi.org/10.1002/esp.4715
Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Benito Alonso, J. L., Coldea, G., Dick, J., Erschbamer, B., Fernández Calzado, M. R., Kazakis, G., Krajči, J., Larsson, P., Mallaun, M., Michelsen, O., Moiseev, D., Moiseev, P., Molau, U., Merzouki, A., … Grabherr, G. (2012). Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2(2), 111-115. https://doi.org/10.1038/nclimate1329
Greenwell, B. M. (2017). pdp: An R package for constructing partial dependence plots. The R Journal, 9, 421-436. https://doi.org/10.32614/RJ-2017-016
Hansen, S. (1984). Estimation of potential and actual evapotranspiration. Nordic Hydrology, 15(4-5), 205-212. https://doi.org/10.2166/nh.1984.0017
Hantel, M., & Hirtl-Wielke, L. M. (2007). Sensitivity of Alpine snow cover to European temperature. International Journal of Climatology, 27(10), 1265-1275. https://doi.org/10.1002/joc.1472
Harsch, M. A., Hulme, P. E., McGlone, M. S., & Duncan, R. P. (2009). Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters, 12(10), 1040-1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x
Hinojosa, L., Napoleone, C., Moulery, M., & Lambin, E. F. (2016). The "mountain effect" in the abandonment of grasslands: Insights from the French Southern Alps. Agriculture Ecosystems & Environment, 221, 115-124. https://doi.org/10.1016/j.agee.2016.01.032
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., & Steltzer, H. (2019). Chapter 2: High mountain areas. In H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer (Eds.), IPCC special report on ocean and cryosphere in a changing climate. In press. https://www.ipcc.ch/srocc/chapter/chapter-2/
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213. https://doi.org/10.1016/s0034-4257(02)00096-2
Jager, H., Peratoner, G., Tappeiner, U., & Tasser, E. (2020). Grassland biomass balance in the European Alps: Current and future ecosystem service perspectives. Ecosystem Services, 45, https://doi.org/10.1016/j.ecoser.2020.101163
Jolly, W. M., Dobbertin, M., Zimmermann, N. E., & Reichstein, M. (2005). Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophysical Research Letters, 32(18). https://doi.org/10.1029/2005GL023252
Ju, J., & Masek, J. G. (2016). The vegetation greenness trend in Canada and US Alaska from 1984-2012 Landsat data. Remote Sensing of Environment, 176, 1-16. https://doi.org/10.1016/j.rse.2016.01.001
Keenan, T. F., & Riley, W. J. (2018). Greening of the land surface in the world's cold regions consistent with recent warming. Nature Climate Change, 8(9), 825. https://doi.org/10.1038/s41558-018-0258-y
Klein, G., Vitasse, Y., Rixen, C., Marty, C., & Rebetez, M. (2016). Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Climatic Change, 139(3-4), 637-649. https://doi.org/10.1007/s10584-016-1806-y
Körner, C. (1999). Alpine plant life. Springer Verlag.
Krakauer, N. Y., Lakhankar, T., & Anadon, J. D. (2017). Mapping and attributing normalized difference vegetation index trends for Nepal. Remote Sensing, 9(10). https://doi.org/10.3390/rs9100986
Kuhn, M. (2020). Caret: Classification and regression training. R package version 6.0-86. Retrieved from https://CRAN.R-project.org/package=caret
Lamprecht, A., Semenchuk, P. R., Steinbauer, K., Winkler, M., & Pauli, H. (2018). Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytologist, 220(2), 447-459. https://doi.org/10.1111/nph.15290
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18-22.
Liberati, L., Messerli, S., Matteodo, M., & Vittoz, P. (2019). Contrasting impacts of climate change on the vegetation of windy ridges and snowbeds in the Swiss Alps. Alpine Botany, 129(2), 95-105. https://doi.org/10.1007/s00035-019-00223-5
Mainetti, A., D'Amico, M., Probo, M., Quaglia, E., Ravetto Enri, S., Celi, L., & Lonati, M. (2021). Successional herbaceous species affect soil processes in a high-elevation alpine proglacial chronosequence. Frontiers in Environmental Science, 8. https://doi.org/10.3389/fenvs.2020.615499
Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C., Morin, S., Schöner, W., Cat Berro, D., Chiogna, G., De Gregorio, L., Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt, M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., … Weilguni, V. (2021). Observed snow depth trends in the European Alps: 1971 to 2019. The Cryosphere, 15(3), 1343-1382. https://doi.org/10.5194/tc-15-1343-2021
Matteodo, M., Ammann, K., Verrecchia, E. P., & Vittoz, P. (2016). Snowbeds are more affected than other subalpine-alpine plant communities by climate change in the Swiss Alps. Ecology and Evolution, 6(19), 6969-6982. https://doi.org/10.1002/ece3.2354
McLeod, A. I. (2005). Kendall rank correlation and Mann-Kendall trend test. R package Version 2.2. Retrieved from https://CRAN.R-project.org/package=Kendall
Miura, T., Huete, A. R., & Yoshioka, H. (2000). Evaluation of sensor calibration uncertainties on vegetation indices for MODIS. IEEE Transactions on Geoscience and Remote Sensing, 38(3), 1399-1409. https://doi.org/10.1109/36.843034
Motta, R., & Nola, P. (2001). Growth trends and dynamics in sub-alpine forest stands in the Varaita Valley (Piedmont, Italy) and their relationships with human activities and global change. Journal of Vegetation Science, 12(2), 219-230. https://doi.org/10.2307/3236606
Myers-Smith, I. H., Kerby, J. T., Phoenix, G. K., Bjerke, J. W., Epstein, H. E., Assmann, J. J., John, C., Andreu-Hayles, L., Angers-Blondin, S., Beck, P. S. A., Berner, L. T., Bhatt, U. S., Bjorkman, A. D., Blok, D., Bryn, A., Christiansen, C. T., Cornelissen, J. H. C., Cunliffe, A. M., Elmendorf, S. C., … Wipf, S. (2020). Complexity revealed in the greening of the Arctic. Nature Climate Change, 10(2), 106-117. https://doi.org/10.1038/s41558-019-0688-1
Myneni, R. B., & Williams, D. L. (1994). On the relationship between FAPAR and NDVI. Remote Sensing of Environment, 49(3), 200-211. https://doi.org/10.1016/0034-4257(94)90016-7
Napoli, A., Crespi, A., Ragone, F., Maugeri, M., & Pasquero, C. (2019). Variability of orographic enhancement of precipitation in the Alpine region. Scientific Reports, 9, https://doi.org/10.1038/s41598-019-49974-5
Nettier, B., Dobremez, L., Coussy, J.-L., & Romagny, T. (2010). Attitudes of livestock farmers and sensitivity of livestock farming systems to drought conditions in the French Alps. Revue De Geographie Alpine-Journal of Alpine Research, 98(1-4), 383-400. https://doi.org/10.4000/rga.1307
Palazzi, E., Mortarini, L., Terzago, S., & von Hardenberg, J. (2019). Elevation-dependent warming in global climate model simulations at high spatial resolution. Climate Dynamics, 52(5-6), 2685-2702. https://doi.org/10.1007/s00382-018-4287-z
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., … Yang, D. Q. (2015). Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5(5), 424-430. https://doi.org/10.1038/nclimate2563
Randin, C. F., Ashcroft, M. B., Bolliger, J., Cavender-Bares, J., Coops, N. C., Dullinger, S., Dirnböck, T., Eckert, S., Ellis, E., Fernández, N., Giuliani, G., Guisan, A., Jetz, W., Joost, S., Karger, D., Lembrechts, J., Lenoir, J., Luoto, M., Morin, X., … Payne, D. (2020). Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 239, https://doi.org/10.1016/j.rse.2019.111626
Rixen, C., Wipf, S., Frei, E., & Stoeckli, V. (2014). Faster, higher, more? Past, present and future dynamics of alpine and arctic flora under climate change. Alpine Botany, 124(2), 77-79. https://doi.org/10.1007/s00035-014-0141-z
Rogora, M., Frate, L., Carranza, M. L., Freppaz, M., Stanisci, A., Bertani, I., Bottarin, R., Brambilla, A., Canullo, R., Carbognani, M., Cerrato, C., Chelli, S., Cremonese, E., Cutini, M., Di Musciano, M., Erschbamer, B., Godone, D., Iocchi, M., Isabellon, M., … Matteucci, G. (2018). Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Science of the Total Environment, 624, 1429-1442. https://doi.org/10.1016/j.scitotenv.2017.12.155
Ropars, P., & Boudreau, S. (2012). Shrub expansion at the forest-tundra ecotone: Spatial heterogeneity linked to local topography. Environmental Research Letters, 7(1), https://doi.org/10.1088/1748-9326/7/1/015501
Ropars, P., Levesque, E., & Boudreau, S. (2015). Shrub densification heterogeneity in subarctic regions: The relative influence of historical and topographic variables. Ecoscience, 22(2-4), 83-95. https://doi.org/10.1080/11956860.2015.1107262
Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627-1639. https://doi.org/10.1021/ac60214a047
Schoener, W., Koch, R., Matulla, C., Marty, C., & Tilg, A.-M. (2019). Spatiotemporal patterns of snow depth within the Swiss-Austrian Alps for the past half century (1961 to 2012) and linkages to climate change. International Journal of Climatology, 39(3), 1589-1603. https://doi.org/10.1002/joc.5902
Signal Developers. (2013). signal: Signal processing. Retrieved from http://r-forge.r-project.org/projects/signal/
Steinbauer, M. J., Grytnes, J.-A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H., Rixen, C., Winkler, M., Bardy-Durchhalter, M., Barni, E., Bjorkman, A. D., Breiner, F. T., Burg, S., Czortek, P., Dawes, M. A., Delimat, A., Dullinger, S., Erschbamer, B., Felde, V. A., … Wipf, S. (2018). Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 556(7700), 231. https://doi.org/10.1038/s41586-018-0005-6
Sturm, M., Schimel, J., Michaelson, G., Welker, J. M., Oberbauer, S. F., Liston, G. E., Fahnestock, J., & Romanovsky, V. E. (2005). Winter biological processes could help convert arctic tundra to shrubland. BioScience, 55(1), 17-26. https://doi.org/10.1641/0006-3568(2005)055[0017:wbpchc]2.0.co;2
Suding, K. N., Farrer, E. C., King, A. J., Kueppers, L., & Spasojevic, M. J. (2015). Vegetation change at high elevation: Scale dependence and interactive effects on Niwot Ridge. Plant Ecology & Diversity, 8(5-6), 713-725. https://doi.org/10.1080/17550874.2015.1010189
Tape, K. D., Hallinger, M., Welker, J. M., & Ruess, R. W. (2012). Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems, 15(5), 711-724. https://doi.org/10.1007/s10021-012-9540-4
Tape, K. D., Sturm, M., & Racine, C. (2006). The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biology, 12(4), 686-702. https://doi.org/10.1111/j.1365-2486.2006.01128.x
Tappeiner, U., Borsdorf, A., & Tasser, E. (2008). Mapping the Alps: Society-Economy-Environment. Spektrum Akademischer Verlag.
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
Venables, W., & Ripley, B. (2002). Modern applied statistics (S. Fourth, Ed.). Springer.
Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010). Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1), 106-115. https://doi.org/10.1016/j.rse.2009.08.014
Vermote, E., & Vermeulen, A. (1999). Atmospheric correction algorithm: Spectral reflectances (MOD09). ATBD version, 4, 1-107. https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd_mod08.pdf
Vernay, M., Lafaysse, M., Hagenmuller, P., Nheili, R., Verfaillie, D., & Morin, S. (2019). The S2M meteorological and snow cover reanalysis in the French mountainous areas (1958-present). Dataset. https://doi.org/10.25326/37
Vionnet, V., Six, D., Auger, L., Dumont, M., Lafaysse, M., Quéno, L., Réveillet, M., Dombrowski-Etchevers, I., Thibert, E., & Vincent, C. (2019). Sub-kilometer precipitation datasets for snowpack and glacier modeling in alpine terrain. Frontiers in Earth Science, 7. https://doi.org/10.3389/feart.2019.00182
Viovy, N., Arino, O., & Belward, A. S. (1992). The Best Index Slope Extraction (BISE)-A method for reducing noise in NDVI time-series. International Journal of Remote Sensing, 13(8), 1585-1590. https://doi.org/10.1080/01431169208904212
Vittoz, P., Bodin, J., Ungricht, S., Burga, C., & Walther, G. R. (2008). One century of vegetation change on Isla Persa, a nunatak in the Bernina massif in the Swiss Alps. Journal of Vegetation Science, 19(5), 671-628. https://doi.org/10.3170/2008-8-18434
Vittoz, P., Rulence, B., Largey, T., & Frelechoux, F. (2008). Effects of climate and land-use change on the establishment and growth of cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arctic Antarctic and Alpine Research, 40(1), 225-232. https://doi.org/10.1657/1523-0430(06-010)[vittoz]2.0.co;2
Vorkauf, M., Marty, C., Kahmen, A., & Hiltbrunner, E. (2021). Past and future snowmelt trends in the Swiss Alps: The role of temperature and snowpack. Climatic Change, 165(3), 1-19.
Xie, J., Jonas, T., Rixen, C., de Jong, R., Garonna, I., Notarnicola, C., Asam, S., Schaepman, M. E., & Kneubühler, M. (2020). Land surface phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. Science of the Total Environment, 725. https://doi.org/10.1016/j.scitotenv.2020.138380
Zhang, G., Zhang, Y., Dong, J., & Xiao, X. (2013). Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4309-4314. https://doi.org/10.1073/pnas.1210423110
Zhao, M., & Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994), 940-943. https://doi.org/10.1126/science.1192666
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X. U., Liu, Y., Liu, R., Mao, J., … Zeng, N. (2016). Greening of the Earth and its drivers. Nature Climate Change, 6(8), 791. https://doi.org/10.1038/nclimate3004

Auteurs

Philippe Choler (P)

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France.

Arthur Bayle (A)

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France.

Bradley Z Carlson (BZ)

Centre de Recherches sur les Écosystèmes d'Altitude (CREA), Chamonix, France.

Christophe Randin (C)

Department of Ecology & Evolution/Interdisciplinary Centre for Mountain Research (CIRM), Université de Lausanne, Lausanne, Switzerland.

Gianluca Filippa (G)

Climate Change Unit, Environmental Protection Agency of Aosta Valley, Saint-Christophe, Italy.

Edoardo Cremonese (E)

Climate Change Unit, Environmental Protection Agency of Aosta Valley, Saint-Christophe, Italy.

Articles similaires

Humans Climate Change Health Personnel Surveys and Questionnaires Medical Oncology
Animals Cattle Alberta Deer Seasons
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals

Classifications MeSH