Muscle-specific economy of force generation and efficiency of work production during human running.

enthalpy-velocity relationship force-length and force-velocity relationship human length- and velocity-decoupling metabolic cost of running physics of living systems soleus muscle tendon elasticity vastus lateralis muscle

Journal

eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614

Informations de publication

Date de publication:
02 09 2021
Historique:
received: 03 02 2021
accepted: 06 08 2021
entrez: 2 9 2021
pubmed: 3 9 2021
medline: 10 11 2021
Statut: epublish

Résumé

Human running features a spring-like interaction of body and ground, enabled by elastic tendons that store mechanical energy and facilitate muscle operating conditions to minimize the metabolic cost. By experimentally assessing the operating conditions of two important muscles for running, the soleus and vastus lateralis, we investigated physiological mechanisms of muscle work production and muscle force generation. We found that the soleus continuously shortened throughout the stance phase, operating as work generator under conditions that are considered optimal for work production: high force-length potential and high enthalpy efficiency. The vastus lateralis promoted tendon energy storage and contracted nearly isometrically close to optimal length, resulting in a high force-length-velocity potential beneficial for economical force generation. The favorable operating conditions of both muscles were a result of an effective length and velocity-decoupling of fascicles and muscle-tendon unit, mostly due to tendon compliance and, in the soleus, marginally by fascicle rotation.

Identifiants

pubmed: 34473056
doi: 10.7554/eLife.67182
pii: 67182
pmc: PMC8412947
doi:
pii:

Banques de données

figshare
['10.6084/m9.figshare.14046749']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2021, Bohm et al.

Déclaration de conflit d'intérêts

SB, AS, AS, AA none, FM None

Références

Proc R Soc Lond B Biol Sci. 1964 Jan 14;159:319-24
pubmed: 14114167
J Physiol. 1998 Oct 15;512 ( Pt 2):603-14
pubmed: 9763648
Pflugers Arch. 1990 Apr;416(1-2):113-9
pubmed: 2352828
Comput Methods Biomech Biomed Engin. 2003 Apr;6(2):99-111
pubmed: 12745424
Exerc Sport Sci Rev. 2019 Oct;47(4):237-245
pubmed: 31436749
Comput Methods Biomech Biomed Engin. 2012;15(3):295-301
pubmed: 21756121
Scand J Med Sci Sports. 2018 Jul;28(7):1828-1836
pubmed: 29603434
J Physiol. 1993 Dec;472:595-614
pubmed: 8145163
J Exp Biol. 2007 Sep;210(Pt 17):2949-60
pubmed: 17704070
Scand J Med Sci Sports. 2020 Jul;30(7):1163-1176
pubmed: 32227378
Prog Biophys Mol Biol. 2005 May;88(1):1-58
pubmed: 15561300
Am J Physiol Regul Integr Comp Physiol. 2008 Nov;295(5):R1593-8
pubmed: 18815206
Comp Biochem Physiol A Mol Integr Physiol. 2002 Dec;133(4):1087-99
pubmed: 12485693
J Biomech. 2013 Feb 22;46(4):780-7
pubmed: 23246045
Science. 2000 Apr 7;288(5463):100-6
pubmed: 10753108
J Physiol. 1993 Dec;472:61-80
pubmed: 8145164
Elife. 2021 Sep 02;10:
pubmed: 34473056
J Appl Physiol. 1964 Mar;19:249-56
pubmed: 14155290
Exerc Sport Sci Rev. 2000 Jul;28(3):99-107
pubmed: 10916700
J Biomech. 2008 Jul 19;41(10):2211-8
pubmed: 18555257
Am J Physiol. 1996 Aug;271(2 Pt 1):C563-70
pubmed: 8769996
R Soc Open Sci. 2017 May 3;4(5):170185
pubmed: 28573027
J Neuroeng Rehabil. 2020 Feb 19;17(1):25
pubmed: 32075669
Proc Biol Sci. 2001 Feb 7;268(1464):229-33
pubmed: 11217891
J Appl Physiol (1985). 2015 May 15;118(10):1266-75
pubmed: 25814636
J Biomech. 1988;21(12):1027-41
pubmed: 2577949
J Exp Biol. 2013 Jun 1;216(Pt 11):2150-60
pubmed: 23470656
J Anat. 1993 Apr;182 ( Pt 2):213-30
pubmed: 8376196
J Biomech. 1977;10(9):529-39
pubmed: 914876
Scand J Med Sci Sports. 2015 Apr;25(2):e208-13
pubmed: 24975992
J Electromyogr Kinesiol. 2011 Dec;21(6):1081-6
pubmed: 21763154
Proc Biol Sci. 2019 Dec 18;286(1917):20192560
pubmed: 31847774
Exerc Sport Sci Rev. 2000 Jul;28(3):138-43
pubmed: 10916707
J Biomech. 2005 Apr;38(4):885-92
pubmed: 15713310
Eur J Appl Physiol. 2018 Feb;118(2):291-301
pubmed: 29214464
Heliyon. 2020 Nov 01;6(10):e05377
pubmed: 33163662
IEEE Trans Biomed Eng. 1985 Oct;32(10):826-39
pubmed: 4054926
J Biomech. 1992 Sep;25(9):1017-26
pubmed: 1517262
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1745-50
pubmed: 18230734
J Physiol. 1984 Jun;351:517-29
pubmed: 6747875
J Neurol Sci. 1973 Jan;18(1):111-29
pubmed: 4120482
Compr Physiol. 2015 Apr;5(2):961-95
pubmed: 25880520
J Exp Biol. 2011 Feb 1;214(Pt 3):353-61
pubmed: 21228194
J Sci Med Sport. 2010 Nov;13(6):646-50
pubmed: 20478742
J Physiol. 1924 May 23;58(6):373-95
pubmed: 16993634
J Sports Sci. 1998 Feb;16(2):177-86
pubmed: 9531006
J Appl Physiol (1985). 2015 Jan 15;118(2):193-9
pubmed: 25593218
Front Physiol. 2017 Jun 22;8:433
pubmed: 28690549
J Physiol. 1966 May;184(1):170-92
pubmed: 5921536
Proc Biol Sci. 2021 Jan 27;288(1943):20202784
pubmed: 33499791
J R Soc Interface. 2012 Jan 7;9(66):110-8
pubmed: 21613286
J Exp Biol. 2016 Jan;219(Pt 2):285-94
pubmed: 26792341
PLoS One. 2016 Mar 01;11(3):e0150378
pubmed: 26930416
J Biomech. 1990;23(5):487-94
pubmed: 2373721
Nature. 1990 Jul 19;346(6281):265-7
pubmed: 2374590
PeerJ. 2019 Apr 24;7:e6764
pubmed: 31086731
Histochem J. 1975 May;7(3):259-66
pubmed: 123895
Am J Physiol. 1994 Mar;266(3 Pt 2):R1016-21
pubmed: 8160850
J Biomech Eng. 1984 Aug;106(3):280-2
pubmed: 6492774
Sci Rep. 2018 Mar 22;8(1):5066
pubmed: 29567999
J Physiol. 2010 Oct 1;588(Pt 19):3819-31
pubmed: 20679354
Philos Trans R Soc Lond B Biol Sci. 2011 May 27;366(1570):1554-64
pubmed: 21502126
J Exp Biol. 2014 Sep 1;217(Pt 17):3159-68
pubmed: 24948642
J Exp Biol. 1991 Oct;160:55-69
pubmed: 1960518
Clin Biomech (Bristol, Avon). 2004 Mar;19(3):277-83
pubmed: 15003343
Biophys J. 2000 Aug;79(2):945-61
pubmed: 10920025
J Biomech. 1999 Dec;32(12):1349-53
pubmed: 10569714
Clin Orthop Relat Res. 2009 Apr;467(4):1074-82
pubmed: 18972175
J Exp Biol. 2012 Jun 1;215(Pt 11):1944-56
pubmed: 22573774
J Exp Biol. 2006 Sep;209(Pt 17):3345-57
pubmed: 16916971
J Electromyogr Kinesiol. 2004 Oct;14(5):591-7
pubmed: 15301777

Auteurs

Sebastian Bohm (S)

Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, Berlin, Germany.
Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany.

Falk Mersmann (F)

Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, Berlin, Germany.
Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany.

Alessandro Santuz (A)

Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, Berlin, Germany.
Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany.

Arno Schroll (A)

Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, Berlin, Germany.
Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany.

Adamantios Arampatzis (A)

Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, Berlin, Germany.
Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH