The contribution of insects to global forest deadwood decomposition.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
09 2021
Historique:
received: 07 06 2020
accepted: 18 06 2021
entrez: 2 9 2021
pubmed: 3 9 2021
medline: 24 9 2021
Statut: ppublish

Résumé

The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks

Identifiants

pubmed: 34471275
doi: 10.1038/s41586-021-03740-8
pii: 10.1038/s41586-021-03740-8
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

77-81

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
pubmed: 21764754 doi: 10.1126/science.1201609
Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014).
doi: 10.1038/nclimate2251
Chambers, J. Q., Higuchi, N., Schimel, J. P. J., Ferreira, L. V. & Melack, J. M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122, 380–388 (2000).
pubmed: 28308289 doi: 10.1007/s004420050044
González, G. et al. Decay of aspen (Populus tremuloides Michx.) wood in moist and dry boreal, temperate, and tropical forest fragments. Ambio 37, 588–597 (2008).
pubmed: 19205182 doi: 10.1579/0044-7447-37.7.588
Stokland, J., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge Univ. Press, 2012).
Lustenhouwer, N. et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl Acad. Sci. USA 117, 11551–11558 (2020).
pubmed: 32404424 pmcid: 7261009 doi: 10.1073/pnas.1909166117
Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. Camb. Philos. Soc. 91, 70–85 (2016).
pubmed: 25424353 doi: 10.1111/brv.12158
Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014).
pubmed: 25216297 doi: 10.1038/ncomms5967
Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 10, 2171 (2019).
pubmed: 31092831 pmcid: 6520339 doi: 10.1038/s41467-019-10174-4
Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).
doi: 10.1038/nclimate3303
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
doi: 10.1038/s41586-020-2035-0 pubmed: 32132693
Portillo-Estrada, M. et al. Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments. Biogeosciences 13, 1621–1633 (2016).
doi: 10.5194/bg-13-1621-2016
Christenson, L. et al. Winter climate change influences on soil faunal distribution and abundance: implications for decomposition in the northern forest. Northeast. Nat. 24, B209–B234 (2017).
doi: 10.1656/045.024.s721
Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).
pubmed: 23842499 doi: 10.1038/nature12291
Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).
pubmed: 24429523 doi: 10.1038/nature12914
Martin, A., Dimke, G., Doraisami, M. & Thomas, S. Carbon fractions in the world’s dead wood. Nat. Commun. 12, 889 (2021).
Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).
doi: 10.5194/essd-11-1783-2019
Marshall, D. J., Pettersen, A. K., Bode, M. & White, C. R. Developmental cost theory predicts thermal environment and vulnerability to global warming. Nat. Ecol. Evol. 4, 406–411 (2020).
pubmed: 32127682 doi: 10.1038/s41559-020-1114-9
Buczkowski, G. & Bertelsmeier, C. Invasive termites in a changing climate: a global perspective. Ecol. Evol. 7, 974–985 (2017).
pubmed: 28168033 pmcid: 5288252 doi: 10.1002/ece3.2674
Diaz, S., Settele, J. & Brondizio, E. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovermental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).
van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).
doi: 10.1126/science.aax9931 pubmed: 32327596
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).
pubmed: 31666721 doi: 10.1038/s41586-019-1684-3
Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).
doi: 10.1038/s41558-020-00976-6
Jacobsen, R. M., Sverdrup-Thygeson, A., Kauserud, H., Mundra, S. & Birkemoe, T. Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct. Ecol. 32, 2571–2582 (2018).
doi: 10.1111/1365-2435.13196
Skelton, J. et al. Fungal symbionts of bark and ambrosia beetles can suppress decomposition of pine sapwood by competing with wood-decay fungi. Fungal Ecol. 45, 100926 (2020).
doi: 10.1016/j.funeco.2020.100926
Wu, D., Seibold, S., Ruan, Z., Weng, C. & Yu, M. Island size affects wood decomposition by changing decomposer distribution. Ecography 44, 456–468 (2021).
doi: 10.1111/ecog.05328
Harmon, M. E. et al. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance Manag. 15, 1 (2020).
pubmed: 31940113 pmcid: 7227111 doi: 10.1186/s13021-019-0136-6
Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).
doi: 10.1111/j.1365-2486.2008.01672.x
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
pubmed: 11567137 doi: 10.1126/science.1061967
Baldrian, P. et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 56, 60–68 (2013).
doi: 10.1016/j.soilbio.2012.01.020
A’Bear, A. D., Jones, T. H., Kandeler, E. & Boddy, L. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol. Biochem. 70, 151–158 (2014).
doi: 10.1016/j.soilbio.2013.12.017
IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, 2014).
Smyth, C. E., Kurz, W. A., Trofymow, J. A. & CIDET Working Group. Including the effects of water stress on decomposition in the Carbon Budget Model of the Canadian Forest Sector CBM-CFS3. Ecol. Modell. 222, 1080–1091 (2011).
doi: 10.1016/j.ecolmodel.2010.12.005
Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol. Lett. 12, 45–56 (2009).
pubmed: 19016827 doi: 10.1111/j.1461-0248.2008.01259.x
Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).
pubmed: 30779897 doi: 10.1016/j.cub.2019.01.012
Birkemoe, T., Jacobsen, R. M., Sverdrup-Thygeson, A. & Biedermann, P. H. W. in Saproxylic Insects (ed. Ulyshen, M. D.) 377–427 (Springer, 2018).
Harvell, M. C. E. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).
pubmed: 12077394 doi: 10.1126/science.1063699
Berkov, A. in Saproxylic Insects (ed. Ulyshen, M. D.) 547–580 (Springer, 2018).
Wang, C., Bond-Lamberty, B. & Gower, S. T. Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia 132, 374–381 (2002).
pubmed: 28547415 doi: 10.1007/s00442-002-0987-4
Peršoh, D. & Borken, W. Impact of woody debris of different tree species on the microbial activity and community of an underlying organic horizon. Soil Biol. Biochem. 115, 516–525 (2017).
doi: 10.1016/j.soilbio.2017.09.017
Campbell, J., Donato, D., Azuma, D. & Law, B. Pyrogenic carbon emission from a large wildfire in Oregon, United States. J. Geophys. Res. 112, G04014 (2007).
van Leeuwen, T. T. et al. Biomass burning fuel consumption rates: a field measurement database. Biogeosciences 11, 7305–7329 (2014).
doi: 10.5194/bg-11-7305-2014
McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).
pubmed: 32467364 doi: 10.1126/science.aaz9463
Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013).
doi: 10.1111/2041-210x.12012
Bässler, C., Heilmann-Clausen, J., Karasch, P., Brandl, R. & Halbwachs, H. Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol. 17, 205–212 (2015).
doi: 10.1016/j.funeco.2014.06.005
Ryvarden, L. & Gilbertson, R. L. The Polyporaceae of Europe (Fungiflora, 1994).
Eriksson, J. & Ryvarden, L. The Corticiaceae of North Europe Parts 1–8 (Fungiflora, 1987).
Boddy, L., Hynes, J., Bebber, D. P. & Fricker, M. D. Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience 50, 9–19 (2009).
doi: 10.1007/S10267-008-0450-4
Moore, D. Fungal Morphogenesis (Cambridge Univ. Press, 1998).
Clemencon, H. Anatomy of the Hymenomycetes (Univ. Lausanne, 1997).
R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
doi: 10.1002/joc.5086
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
doi: 10.18637/jss.v067.i01
Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).
Robinson, D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc. R. Soc. B 274, 2753–2759 (2007).
pubmed: 17982768 pmcid: 2279225 doi: 10.1098/rspb.2007.1012
Food and Agriculture Organization. Global Ecological Zones for FAO Forest Reporting: 2010 Update, Forest Resource Assessment Working Paper (Food and Agriculture Organization, 2012).
Food and Agriculture Organization. Global Forest Resources Assessment 2015 (Food and Agriculture Organization, 2016).
Christensen, M. et al. Dead wood in European beech (Fagus sylvatica) forest reserves. For. Eco. Man. 210, 267–282 (2005).
doi: 10.1016/j.foreco.2005.02.032
Kobayashi, T. et al. Production of global land cover data – GLCNMO2013. J. Geogr. Geol. 9, 1–15 (2017).
doi: 10.5539/jgg.v9n3p1
Harmon, M. E., Woodall, C. W., Fasth, B., Sexton, J. & Yatkov, M. Differences between Standing and Downed Dead Tree Wood Density Reduction Factors: A Comparison across Decay Classes and Tree Species Research Paper NRS-15 (US Department of Agriculture, Forest Service, Northern Research Station, 2011).
Hararuk, O., Kurz, W. A. & Didion, M. Dynamics of dead wood decay in Swiss forests. For. Ecosyst. 7, 36 (2020).
doi: 10.1186/s40663-020-00248-x
Gora, E. M., Kneale, R. C., Larjavaara, M. & Muller-Landau, H. C. Dead wood necromass in a moist tropical forest: stocks, fluxes, and spatiotemporal variability. Ecosystems 22, 1189–1205 (2019).
doi: 10.1007/s10021-019-00341-5
Hérault, B. et al. Modeling decay rates of dead wood in a neotropical forest. Oecologia 164, 243–251 (2010).
pubmed: 20354731 doi: 10.1007/s00442-010-1602-8
Thünen-Institut für Waldökosysteme. Der Wald in Deutschland - Ausgewählte Ergebnisse der dritten Bundeswaldinventur (Bundesministerium für Ernährung und Landwirtschaft, 2014).
Puletti, N. et al. A dataset of forest volume deadwood estimates for Europe. Ann. For. Sci. 76, 68 (2019).
doi: 10.1007/s13595-019-0832-0
Richardson, S. J. et al. Deadwood in New Zealand’s indigenous forests. For. Ecol. Manage. 258, 2456–2466 (2009).
doi: 10.1016/j.foreco.2009.08.022
Shorohova, E. & Kapitsa, E. Stand and landscape scale variability in the amount and diversity of coarse woody debris in primeval European boreal forests. For. Ecol. Manage. 356, 273–284 (2015).
doi: 10.1016/j.foreco.2015.07.005
Szymañski, C., Fontana, G. & Sanguinetti, J. Natural and anthropogenic influences on coarse woody debris stocks in Nothofagus–Araucaria forests of northern Patagonia, Argentina. Austral Ecol. 42, 48–60 (2017).
doi: 10.1111/aec.12400
Link, K. G. et al. A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow. PLoS One 13, e0200917 (2018).
Saugier, B., Roy, J. & Mooney, H. A. in Terrestrial Global Productivity (eds J. Roy, B. Saugier & H. A. Mooney) 543–557 (Academic Press, 2001).

Auteurs

Sebastian Seibold (S)

Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Freising, Germany. sebastian.seibold@tum.de.
Berchtesgaden National Park, Berchtesgaden, Germany. sebastian.seibold@tum.de.
Field Station Fabrikschleichach, University of Würzburg, Rauhenebrach, Germany. sebastian.seibold@tum.de.
Terrestrial Ecology Research Group, School of Life Sciences, Technical University of Munich, Freising, Germany. sebastian.seibold@tum.de.

Werner Rammer (W)

Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Freising, Germany.

Torsten Hothorn (T)

Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.

Rupert Seidl (R)

Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Freising, Germany.
Berchtesgaden National Park, Berchtesgaden, Germany.

Michael D Ulyshen (MD)

Southern Research Station, USDA Forest Service, Athens, GA, USA.

Janina Lorz (J)

Field Station Fabrikschleichach, University of Würzburg, Rauhenebrach, Germany.

Marc W Cadotte (MW)

Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.

David B Lindenmayer (DB)

Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia.

Yagya P Adhikari (YP)

Department of Biogeography, University of Bayreuth, Bayreuth, Germany.
Department of Disturbance Ecology, University of Bayreuth, Bayreuth, Germany.

Roxana Aragón (R)

Instituto de Ecología Regional, CONICET-Universidad Nacional de Tucumán, Yerba Buena, Argentina.

Soyeon Bae (S)

Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany.

Petr Baldrian (P)

Laboratory of Environmental Microbiology, Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic.

Hassan Barimani Varandi (H)

Agricultural and Natural Resources Research Centre of Mazandaran, Sari, Iran.

Jos Barlow (J)

Lancaster Environment Centre, Lancaster University, Lancaster, UK.
Universidade Federal de Lavras, Lavras, Brazil.

Claus Bässler (C)

Department of Biodiversity Conservation, Goethe-University Frankfurt, Frankfurt, Germany.
Bavarian Forest National Park, Grafenau, Germany.

Jacques Beauchêne (J)

CIRAD, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CNRS, INRA, Universite des Antilles, Universite de Guyane, Kourou, France.

Erika Berenguer (E)

Lancaster Environment Centre, Lancaster University, Lancaster, UK.
Environmental Change Institute, University of Oxford, Oxford, UK.

Rodrigo S Bergamin (RS)

Grassland Vegetation Lab, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.

Tone Birkemoe (T)

Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.

Gergely Boros (G)

Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary.
Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.

Roland Brandl (R)

Animal Ecology, University of Marburg, Marburg, Germany.

Hervé Brustel (H)

École d'Ingénieurs de Purpan, Université de Toulouse, UMR 1201 Dynafor, Toulouse, France.

Philip J Burton (PJ)

Ecosystem Science and Management Program, University of Northern British Columbia, Terrace, British Columbia, Canada.

Yvonne T Cakpo-Tossou (YT)

Laboratory of Applied Ecology, University of Abomey-Calavi, Godomey, Benin.

Jorge Castro (J)

Department of Ecology, University of Granada, Granada, Spain.

Eugénie Cateau (E)

École d'Ingénieurs de Purpan, Université de Toulouse, UMR 1201 Dynafor, Toulouse, France.
Réserves Naturelles de France, Dijon, France.

Tyler P Cobb (TP)

Royal Alberta Museum, Edmonton, Alberta, Canada.

Nina Farwig (N)

Conservation Ecology, University of Marburg, Marburg, Germany.

Romina D Fernández (RD)

Instituto de Ecología Regional, CONICET-Universidad Nacional de Tucumán, Yerba Buena, Argentina.

Jennifer Firn (J)

Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia.
Centre for the Environment, Institute for Future Environments, Brisbane, Queensland, Australia.

Kee Seng Gan (KS)

Forest Research Institute Malaysia, Kuala Lumpur, Malaysia.

Grizelle González (G)

International Institute of Tropical Forestry, USDA Forest Service, San Juan, PR, USA.

Martin M Gossner (MM)

Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.

Jan C Habel (JC)

Evolutionary Zoology, University of Salzburg, Salzburg, Austria.

Christian Hébert (C)

Natural Resources Canada, Canadian Forest Service, Quebec, Quebec, Canada.

Christoph Heibl (C)

Bavarian Forest National Park, Grafenau, Germany.

Osmo Heikkala (O)

Eurofins Ahma Oy, Oulu, Finland.

Andreas Hemp (A)

Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany.

Claudia Hemp (C)

Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany.

Joakim Hjältén (J)

Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.

Stefan Hotes (S)

Applied Landscape Ecology, Chuo University, Tokyo, Japan.

Jari Kouki (J)

School of Forest Sciences, University of Eastern Finland, Joensuu, Finland.

Thibault Lachat (T)

Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland.

Jie Liu (J)

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.

Yu Liu (Y)

ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong National Station for Forest Ecosystem Research, East China Normal University, Shanghai, China.

Ya-Huang Luo (YH)

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.

Damasa M Macandog (DM)

Institute of Biological Sciences, University of the Philippines Los Banos, Laguna, The Philippines.

Pablo E Martina (PE)

Department of Thermodynamics, Universidad Nacional del Nordeste, Resistencia, Argentina.

Sharif A Mukul (SA)

Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia.

Baatarbileg Nachin (B)

Forest Ecosystem Monitoring Laboratory, National University of Mongolia, Ulaanbaatar, Mongolia.

Kurtis Nisbet (K)

School of Environment and Science, Griffith University, Nathan, Queensland, Australia.

John O'Halloran (J)

School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.

Anne Oxbrough (A)

Edge Hill University, Ormskirk, UK.

Jeev Nath Pandey (JN)

Institute of Forestry, Tribhuvan University, Pokhara, Nepal.

Tomáš Pavlíček (T)

Institute of Evolution, University of Haifa, Haifa, Israel.

Stephen M Pawson (SM)

Scion (New Zealand Forest Research Institute), Christchurch, New Zealand.
School of Forestry, University of Canterbury, Christchurch, New Zealand.

Jacques S Rakotondranary (JS)

Institute of Zoology, University of Hamburg, Hamburg, Germany.
Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar.

Jean-Baptiste Ramanamanjato (JB)

Tropical Biodiversity and Social Enterprise, Fort Dauphin, Madagascar.

Liana Rossi (L)

Departamento de Ecologia, Universidade Estadual Paulista, Rio Claro, Brazil.

Jürgen Schmidl (J)

Ecology Group, University Erlangen-Nuremberg, Erlangen, Germany.

Mark Schulze (M)

H. J. Andrews Experimental Forest, Blue River, OR, USA.

Stephen Seaton (S)

Environmental and Conservation Sciences, Murdoch University, Melville, Western Australia, Australia.

Marisa J Stone (MJ)

Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia.

Nigel E Stork (NE)

Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia.

Byambagerel Suran (B)

Forest Ecosystem Monitoring Laboratory, National University of Mongolia, Ulaanbaatar, Mongolia.

Anne Sverdrup-Thygeson (A)

Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.

Simon Thorn (S)

Field Station Fabrikschleichach, University of Würzburg, Rauhenebrach, Germany.

Ganesh Thyagarajan (G)

Ashoka Trust for Research in Ecology and the Environment, Bangalore, India.

Timothy J Wardlaw (TJ)

ARC Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia.

Wolfgang W Weisser (WW)

Terrestrial Ecology Research Group, School of Life Sciences, Technical University of Munich, Freising, Germany.

Sungsoo Yoon (S)

EcoBank Team, National Institute of Ecology, Seocheon-gun, Republic of Korea.

Naili Zhang (N)

College of Forestry, Beijing Forestry University, Beijing, China.

Jörg Müller (J)

Field Station Fabrikschleichach, University of Würzburg, Rauhenebrach, Germany.
Bavarian Forest National Park, Grafenau, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH