High aboveground carbon stock of African tropical montane forests.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
08 2021
08 2021
Historique:
received:
20
12
2020
accepted:
14
06
2021
entrez:
26
8
2021
pubmed:
27
8
2021
medline:
12
2
2022
Statut:
ppublish
Résumé
Tropical forests store 40-50 per cent of terrestrial vegetation carbon
Identifiants
pubmed: 34433947
doi: 10.1038/s41586-021-03728-4
pii: 10.1038/s41586-021-03728-4
doi:
Substances chimiques
Carbon
7440-44-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
536-542Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Erb, K. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).
pubmed: 29258288
doi: 10.1038/nature25138
Spracklen, D. V. & Righelato, R. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11, 2741–2754 (2014).
doi: 10.5194/bg-11-2741-2014
Fahey, T. J., Sherman, R. E. & Tanne, E. V. J. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. J. Trop. Ecol. 32, 355–367 (2016).
doi: 10.1017/S0266467415000176
Lewis, S. L. et al. Above-ground biomass and structure of 260 African tropical forests. Phil. Trans. R. Soc. Lond. B 368, 20120295 (2013).
doi: 10.1098/rstb.2012.0295
Vilanova, E. et al. Environmental drivers of forest structure and stem turnover across Venezuelan tropical forests. PLoS ONE 13, e0198489 (2018).
pubmed: 29927972
pmcid: 6013196
doi: 10.1371/journal.pone.0198489
Álvarez-Dávila, E. et al. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS ONE 12, e0171072 (2017).
pubmed: 28301482
pmcid: 5354365
doi: 10.1371/journal.pone.0171072
Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).
pubmed: 32439789
doi: 10.1126/science.aaw7578
Domke, G. et al. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Calvo Buendia, E. et al.) Ch. 4, 48 (IPCC, 2019).
African Mountains Atlas (UNEP, 2014).
Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).
pubmed: 31515383
doi: 10.1126/science.aax0149
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
pubmed: 21764754
doi: 10.1126/science.1201609
Booth, B. B. B. et al. High sensitivity of future global warming to land carbon cycle processes. Environ. Res. Lett. 7, 024002 (2012).
doi: 10.1088/1748-9326/7/2/024002
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
doi: 10.1038/s41586-020-2035-0
Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403 (2012).
doi: 10.5194/bg-9-3381-2012
Bastin, J.-F. et al. Pan‐tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr. 27, 1366–1383 (2018).
doi: 10.1111/geb.12803
CCI BIOMASS Product User Guide Year 1 Version 1.0, https://climate.esa.int/sites/default/files/biomass_D4.3_Product_User_Guide_V1.0.pdf (Aberystwyth University and GAMMA Remote Sensing, 2019).
Lefsky, M. A., Keller, M., Pang, Y., de Camargo, P. & Hunter, M. O. Revised method for forest canopy height estimation from the Geoscience Laser Altimeter System waveforms. J. Appl. Remote Sens. 1, 013537 (2007).
doi: 10.1117/1.2795724
Willcock, S. et al. Quantifying and understanding carbon storage and sequestration within the Eastern Arc Mountains of Tanzania, a tropical biodiversity hotspot. Carbon Balance Manag. 9, 2 (2014); correction 12, 20 (2017).
pubmed: 24891875
pmcid: 4041645
doi: 10.1186/1750-0680-9-2
Bussmann, R. W. Vegetation zonation and nomenclature of African Mountains—an overview. Lyonia 11, 41–66 (2006).
Hamilton, A. Vegetation, climate and soil, altitudinal relationships on the East Usambara Mountains of Tanzania. J. East Afr. Nat. Hist. 87, 85–89 (1998).
doi: 10.2982/0012-8317(1998)87[85:VCASAR]2.0.CO;2
Phillips, O., Baker, T., Brienen, R. & Feldpausch, T. RAINFOR Field Manual for Plot Establishment and Remeasurement, http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_2016.pdf (Univ. Leeds, 2016)
Jarvis, A. & Mulligan, M. The climate of cloud forests. Hydrol. Process. 25, 327–343 (2011).
doi: 10.1002/hyp.7847
Platts, P. J., Omeny, P. A. & Marchant, R. AFRICLIM: high-resolution climate projections for ecological applications in Africa. Afr. J. Ecol. 53, 103–108 (2015).
doi: 10.1111/aje.12180
McInerny, G. J. & Purves, D. W. Fine‐scale environmental variation in species distribution modelling: regression dilution, latent variables and neighbourly advice. Methods Ecol. Evol. 2, 248–257 (2011).
doi: 10.1111/j.2041-210X.2010.00077.x
Poulsen, J. R. et al. Ecological consequences of forest elephant declines for Afrotropical forests. Conserv. Biol. 32, 559–567 (2018).
pubmed: 29076179
doi: 10.1111/cobi.13035
Berzaghi, F. et al. Carbon stocks in central African forests enhanced by elephant disturbance. Nat. Geosci. 12, 725–729 (2019); correction 12, 1050 (2019).
doi: 10.1038/s41561-019-0395-6
Enquist, B. J. et al. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).
pubmed: 32019918
pmcid: 7000713
doi: 10.1038/s41467-020-14369-y
Lin, T.-C., Hogan, J. A. & Chang, C. T. Tropical cyclone ecology: a scale-link perspective. Trends Ecol. Evol. 35, 594–604 (2020).
pubmed: 32521243
doi: 10.1016/j.tree.2020.02.012
Favalli, M. et al. Lava flow hazard and risk at Mt. Cameroon volcano. Bull. Volcanol. 74, 423–439 (2012).
doi: 10.1007/s00445-011-0540-6
Stanley, T. & Kirschbaum, D. B. A heuristic approach to global landslide susceptibility mapping. Nat. Hazards 87, 145–164 (2017).
doi: 10.1007/s11069-017-2757-y
Lovett, J. C. Elevational and latitudinal changes in tree associations and diversity in the Eastern Arc mountains of Tanzania. J. Trop. Ecol. 12, 629–650 (1996).
doi: 10.1017/S0266467400009846
Hemp, A. et al. Africa’s highest mountain harbours Africa’s tallest trees. Biodivers. Conserv. 26, 103–113 (2017).
doi: 10.1007/s10531-016-1226-3
Culmsee, H., Leuschner, C., Moser, G. & Pitopang, R. Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. J. Biogeogr. 37, 960–974 (2010).
doi: 10.1111/j.1365-2699.2009.02269.x
Enright, N. J. & Ogden, J. in Ecology of the Southern Conifers (eds Enright, N. J. & Hill, R. S.) 271–287 (Melbourne Univ. Press, 1995).
Neale, D. B. & Wheeler, N. C. in The Conifers: Genomes, Variation and Evolution (eds Neale, D. B. & Wheeler, N. C.) 1–21 (Springer, 2019).
Mill, R. R. Towards a biogeography of the Podocarpaceae. Acta Hortic. 615, 137–147 (2003).
doi: 10.17660/ActaHortic.2003.615.11
Helmer, E. H. et al. Neotropical cloud forests and paramo to contract and dry from declines in cloud immersion and frost. PLoS ONE 14, e0213155 (2019).
pubmed: 30995232
pmcid: 6469753
doi: 10.1371/journal.pone.0213155
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
doi: 10.1126/science.1244693
Turubanova, S., Potapov, P., Tyukavina, A. & Hansen, M. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).
doi: 10.1088/1748-9326/aacd1c
Pellikka, P. K. E., Lötjönen, M., Siljander, M. & Lens, L. Airborne remote sensing of spatiotemporal change (1955–2004) in indigenous and exotic forest cover in the Taita Hills, Kenya. Int. J. Appl. Earth Obs. Geoinf. 11, 221–232 (2009).
Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 14, 23–29 (2021).
doi: 10.1038/s41561-020-00666-0
Spira, C., Kirkby, A., Kujirakwinja, D. & Plumptre, A. J. The socio-economics of artisanal mining and bushmeat hunting around protected areas: Kahuzi–Biega National Park and Itombwe nature reserve, eastern Democratic Republic of Congo. Oryx 53, 136–144 (2019).
doi: 10.1017/S003060531600171X
Bebber, D. P. & Butt, N. Tropical protected areas reduced deforestation carbon emissions by one third from 2000–2012. Sci. Rep. 7, 14005 (2017); 8, 14845 (2018).
pubmed: 29070820
pmcid: 5656627
doi: 10.1038/s41598-017-14467-w
Tegha, K. C. & Sendze, Y. G. Soil organic carbon stocks in Mt Cameroon National Park under different land uses. J. Ecol. Nat. Environ. 8, 20–30 (2016).
Munishi, P. K. T. & Shear, T. H. Carbon storage in afromontane rain forests of the eastern arc mountains of Tanzania: their net contribution to atmospheric carbon. J. Trop. For. Sci. 16, 78–98 (2004).
Wheeler, C. E. et al. Carbon sequestration and biodiversity following 18 years of active tropical forest restoration. For. Ecol. Manage. 373, 44–55 (2016).
doi: 10.1016/j.foreco.2016.04.025
Avitabile, V., Baccini, A., Friedl, M. A. & Schmullius, C. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sens. Environ. 117, 366–380 (2012).
doi: 10.1016/j.rse.2011.10.012
Aneseyee, B. A., Soromessa, T. & Belliethathan, S. Carbon sock of Gambella National Park: implication for climate change mitigation. Int. J. Adv. Life Sci. 35, 41–56 (2015).
Lisboa, S. N. et al. Biomass allometric equation and expansion factor for a mountain moist evergreen forest in Mozambique. Carbon Balance Manag. 13, 23 (2018).
pubmed: 30478717
pmcid: 6261091
doi: 10.1186/s13021-018-0111-7
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 22, 610–613 (2011).
doi: 10.1111/j.1654-1103.2011.01312.x
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., Baker, T. R. & Phillips, O. L. ForestPlots.net Database, http://www.forestplots.net (ForestPlots, 2009).
Cavanaugh, K. et al. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob. Ecol. Biogeogr. 23, 563–573 (2014).
doi: 10.1111/geb.12143
Lewis, S. L. et al. 2009 Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006 (2009).
pubmed: 19225523
doi: 10.1038/nature07771
Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).
doi: 10.1111/gcb.12629
Martin, A. R., Doraisami, M. & Thomas, S. C. Global patterns in wood carbon concentration across the world’s trees and forests. Nat. Geosci. 11, 915–920 (2018).
doi: 10.1038/s41561-018-0246-x
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
pubmed: 19243406
doi: 10.1111/j.1461-0248.2009.01285.x
Zanne, A. E. et al. Towards a worldwide wood economics spectrum. Dryad https://doi.org/10.5061/dryad.234 (2009).
Clark, D. A. et al. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol. Appl. 11, 371–384 (2001).
doi: 10.1890/1051-0761(2001)011[0371:NPPITF]2.0.CO;2
Paul, T. S. H., Kimberley, M. O. & Beets, P. N. Thinking outside the square: evidence that plot shape and layout in forest inventories can bias estimates of stand metrics. Methods Ecol. Evol. 10, 381–388 (2019).
doi: 10.1111/2041-210X.13113
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
doi: 10.1002/joc.5086
Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).
pubmed: 27031693
pmcid: 4816575
doi: 10.1371/journal.pbio.1002415
Albrecht, R., Goodman, S., Buechler, D., Blakeslee R. & Christian, H. LIS 0.1 Degree Very High Resolution Gridded Lightning Climatology Data Collection, https://ghrc.nsstc.nasa.gov/pub/lis/climatology/LIS/ (NASA Global Hydrology Resource Center, 2016).
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
pubmed: 28207752
pmcid: 5313206
doi: 10.1371/journal.pone.0169748
Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11, 234–240 (2021).
doi: 10.1038/s41558-020-00976-6
Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global Datasets of Forest Above-ground Biomass for the year 2017, v1 (Centre for Environmental Data Analysis, 2019).
Saatchi, S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).
pubmed: 21628575
pmcid: 3116381
doi: 10.1073/pnas.1019576108
Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).
doi: 10.1111/gcb.13139
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team nlme: linear and nonlinear mixed effects models. R package version 3.1-151 (2020).
Bates, D., Maechler, M., Bolker B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
doi: 10.18637/jss.v067.i01
Lüdecke, D., Ben-Shachar, M., Patil, I. & Makowski, D. Parameters: extracting, computing and exploring the parameters of statistical models using R. J. Open Source Softw. 5, 2445 (2020).
doi: 10.21105/joss.02445
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).
pubmed: 18481363
doi: 10.1002/bimj.200810425
Barton, K. MuMIn: multi-model inference. R package version 1.43.17 (2020)