Uncharged Components of Single-Stranded DNA Modulate Liquid-Liquid Phase Separation With Cationic Linker Histone H1.
DNA
intrinsically disordered proteins
linker histone H1
liquid droplets
phase separation
Journal
Frontiers in cell and developmental biology
ISSN: 2296-634X
Titre abrégé: Front Cell Dev Biol
Pays: Switzerland
ID NLM: 101630250
Informations de publication
Date de publication:
2021
2021
Historique:
received:
17
05
2021
accepted:
14
07
2021
entrez:
23
8
2021
pubmed:
24
8
2021
medline:
24
8
2021
Statut:
epublish
Résumé
Liquid-liquid phase separation (LLPS) of proteins and DNAs has been recognized as a fundamental mechanism for the formation of intracellular biomolecular condensates. Here, we show the role of the constituent DNA components, i.e., the phosphate groups, deoxyribose sugars, and nucleobases, in LLPS with a polycationic peptide, linker histone H1, a known key regulator of chromatin condensation. A comparison of the phase behavior of mixtures of H1 and single-stranded DNA-based oligomers in which one or more of the constituent moieties of DNA were removed demonstrated that not only the electrostatic interactions between the anionic phosphate groups of the oligomers and the cationic residues of H1, but also the interactions involving nucleobases and deoxyriboses (i) promoted the generation of spherical liquid droplets via LLPS as well as (ii) increased the density of DNA and decreased its fluidity within the droplets under low-salt conditions. Furthermore, we found the formation of non-spherical assemblies with both mobile and immobile fractions at relatively higher concentrations of H1 for all the oligomers. The roles of the DNA components that promote phase separation and modulate droplet characteristics revealed in this study will facilitate our understanding of the formation processes of the various biomolecular condensates containing nucleic acids, such as chromatin organization.
Identifiants
pubmed: 34422830
doi: 10.3389/fcell.2021.710729
pmc: PMC8371396
doi:
Types de publication
Journal Article
Langues
eng
Pagination
710729Informations de copyright
Copyright © 2021 Mimura, Tomita, Sugai, Shinkai, Ishihara and Kurita.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Cell. 2015 Aug 27;162(5):1066-77
pubmed: 26317470
Biophys J. 2007 Feb 15;92(4):1336-42
pubmed: 17114226
Biophys J. 2018 May 22;114(10):2262-2270
pubmed: 29628210
Commun Biol. 2020 Dec 15;3(1):773
pubmed: 33319830
Nature. 2017 Jul 13;547(7662):236-240
pubmed: 28636604
Cell. 2019 Oct 3;179(2):470-484.e21
pubmed: 31543265
Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17330-17335
pubmed: 31399547
Biochemistry. 2018 May 1;57(17):2509-2519
pubmed: 29560725
Biophys J. 2019 Oct 1;117(7):1285-1300
pubmed: 31540706
Nat Commun. 2019 Jan 30;10(1):490
pubmed: 30700721
Elife. 2019 Sep 27;8:
pubmed: 31560342
Adv Colloid Interface Sci. 2011 Sep 14;167(1-2):71-84
pubmed: 21820643
Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):11964-11969
pubmed: 30301810
Cell. 2017 Mar 23;169(1):13-23
pubmed: 28340338
J Biol Chem. 2005 Nov 11;280(45):38090-5
pubmed: 16127177
Biochim Biophys Acta. 2016 Mar;1859(3):486-95
pubmed: 26348411
Nat Rev Mol Cell Biol. 2021 Mar;22(3):183-195
pubmed: 32632317
Biophys Rev. 2020 Apr;12(2):519-539
pubmed: 32189162
J Am Chem Soc. 2018 Feb 7;140(5):1632-1638
pubmed: 29314832
Nature. 2017 Jul 13;547(7662):241-245
pubmed: 28636597
Biophys J. 2018 Nov 20;115(10):1840-1847
pubmed: 30342746
J Am Chem Soc. 2021 Jul 7;143(26):9849-9857
pubmed: 34152774
Cell Res. 2020 May;30(5):393-407
pubmed: 32111972
Elife. 2018 Feb 09;7:
pubmed: 29424691
Angew Chem Int Ed Engl. 2017 Sep 11;56(38):11354-11359
pubmed: 28556382
Nucleic Acids Res. 2001 Jul 1;29(13):2860-74
pubmed: 11433033
J Biol Chem. 2002 Oct 25;277(43):40816-22
pubmed: 12167645
J Mol Biol. 2018 Nov 2;430(23):4650-4665
pubmed: 29913160
Science. 2009 Jun 26;324(5935):1729-32
pubmed: 19460965
J Pharm Sci. 2018 Oct;107(10):2713-2719
pubmed: 29960025
Biochemistry. 2018 May 1;57(17):2540-2548
pubmed: 29644850
Angew Chem Int Ed Engl. 2019 Apr 1;58(15):4858-4862
pubmed: 30762296
Curr Opin Struct Biol. 2017 Jun;44:18-30
pubmed: 27838525
ACS Macro Lett. 2018 Oct 16;7(10):1220-1225
pubmed: 35651258
Int J Mol Sci. 2020 Aug 17;21(16):
pubmed: 32824618
Cell. 2018 Apr 19;173(3):720-734.e15
pubmed: 29677515
Nat Commun. 2019 Jul 2;10(1):2909
pubmed: 31266957
J Biol Chem. 2019 Jul 19;294(29):11054-11059
pubmed: 31097543
Nucleic Acids Res. 2017 Nov 16;45(20):11622-11642
pubmed: 28977426
Trends Cell Biol. 2018 Jun;28(6):420-435
pubmed: 29602697
Biophys J. 2020 Feb 4;118(3):753-764
pubmed: 31952807
Front Mol Biosci. 2019 Apr 03;6:21
pubmed: 31001538
J Proteomics. 2015 Jan 15;113:162-77
pubmed: 25452131
Mol Cell. 2020 Mar 19;77(6):1163-1175.e9
pubmed: 31995729
Nat Chem. 2016 Feb;8(2):129-37
pubmed: 26791895
Biopolymers. 2011 Oct;95(10):695-701
pubmed: 21509744
Sci Adv. 2021 Jan 1;7(1):
pubmed: 33523864
Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7889-7898
pubmed: 30926670
J Biomol Struct Dyn. 2016;34(1):184-200
pubmed: 25723403