Impact of excessive alcohol abuse on age prediction using the VISAGE enhanced tool for epigenetic age estimation in blood.

Alcohol abuse DNA methylation Epigenetic age prediction VISAGE enhanced tool for age estimation of DNA from somatic tissues

Journal

International journal of legal medicine
ISSN: 1437-1596
Titre abrégé: Int J Legal Med
Pays: Germany
ID NLM: 9101456

Informations de publication

Date de publication:
Nov 2021
Historique:
received: 02 03 2021
accepted: 06 07 2021
pubmed: 19 8 2021
medline: 3 3 2022
entrez: 18 8 2021
Statut: ppublish

Résumé

DNA methylation-based clocks provide the most accurate age estimates with practical implications for clinical and forensic genetics. However, the effects of external factors that may influence the estimates are poorly studied. Here, we evaluated the effect of alcohol consumption on epigenetic age prediction in a cohort of extreme alcohol abusers. Blood samples from deceased alcohol abusers and age- and sex-matched controls were analyzed using the VISAGE enhanced tool for age prediction from somatic tissues that enables examination of 44 CpGs within eight age markers. Significantly altered DNA methylation was recorded for alcohol abusers in MIR29B2CHG. This resulted in a mean predicted age of 1.4 years higher compared to the controls and this trend increased in older individuals. The association of alcohol abuse with epigenetic age acceleration, as determined by the prediction analysis performed based on MIR29B2CHG, was small but significant (β = 0.190; P-value = 0.007). However, the observed alteration in DNA methylation of MIR29B2CHG had a non-significant effect on age estimation with the VISAGE age prediction model. The mean absolute error in the alcohol-abusing cohort was 3.1 years, compared to 3.3 years in the control group. At the same time, upregulation of MIR29B2CHG expression may have a biological function, which merits further studies.

Identifiants

pubmed: 34405265
doi: 10.1007/s00414-021-02665-1
pii: 10.1007/s00414-021-02665-1
pmc: PMC8523459
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2209-2219

Subventions

Organisme : European Union's Horizon 2020 Research and Innovation Programme
ID : 740580

Informations de copyright

© 2021. The Author(s).

Références

Bell JT, Tsai P-C, Yang T-P et al (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 8:e1002629. https://doi.org/10.1371/journal.pgen.1002629
doi: 10.1371/journal.pgen.1002629 pubmed: 22532803 pmcid: 3330116
Heyn H, Li N, Ferreira HJ et al (2012) Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci 109:10522–10527. https://doi.org/10.1073/pnas.1120658109
doi: 10.1073/pnas.1120658109 pubmed: 22689993 pmcid: 3387108
Johansson Å, Enroth S, Gyllensten U (2013) Continuous aging of the human DNA methylome throughout the human lifespan. PLoS ONE 8:e67378. https://doi.org/10.1371/journal.pone.0067378
doi: 10.1371/journal.pone.0067378 pubmed: 23826282 pmcid: 3695075
Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115. https://doi.org/10.1186/gb-2013-14-10-r115
doi: 10.1186/gb-2013-14-10-r115 pubmed: 24138928 pmcid: 4015143
Hannum G, Guinney J, Zhao L et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367. https://doi.org/10.1016/j.molcel.2012.10.016
doi: 10.1016/j.molcel.2012.10.016 pubmed: 23177740
Weidner C, Lin Q, Koch C et al (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15:R24. https://doi.org/10.1186/gb-2014-15-2-r24
doi: 10.1186/gb-2014-15-2-r24 pubmed: 24490752 pmcid: 4053864
Gao X, Zhang Y, Breitling LP, Brenner H (2016) Relationship of tobacco smoking and smoking-related DNA methylation with epigenetic age acceleration. Oncotarget 7:46878–46889. https://doi.org/10.18632/oncotarget.9795
doi: 10.18632/oncotarget.9795 pubmed: 27276709 pmcid: 5216910
Levine ME, Lu AT, Quach A et al (2018) An epigenetic biomarker of aging for lifespan and healthspan. Aging 10:573–591. https://doi.org/10.18632/aging.101414
doi: 10.18632/aging.101414 pubmed: 29676998 pmcid: 5940111
Lu AT, Quach A, Wilson JG et al (2019) DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 11:303–327. https://doi.org/10.18632/aging.101684
doi: 10.18632/aging.101684 pubmed: 30669119 pmcid: 6366976
Marioni RE, Shah S, McRae AF et al (2015) DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 16:25. https://doi.org/10.1186/s13059-015-0584-6
doi: 10.1186/s13059-015-0584-6 pubmed: 25633388 pmcid: 4350614
Perna L, Zhang Y, Mons U et al (2016) Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenetics 8:64. https://doi.org/10.1186/s13148-016-0228-z
doi: 10.1186/s13148-016-0228-z pubmed: 27274774 pmcid: 4891876
Lin Q, Weidner CI, Costa IG et al (2016) DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. Aging 8:394–401. https://doi.org/10.18632/aging.100908
doi: 10.18632/aging.100908 pubmed: 26928272 pmcid: 4789590
Zhang H, Gelernter J (2017) Review: DNA methylation and alcohol use disorders: Progress and challenges: DNA Methylation in Alcohol Addiction. Am J Addict 26:502–515. https://doi.org/10.1111/ajad.12465
doi: 10.1111/ajad.12465 pubmed: 27759945
Salameh Y, Bejaoui Y, El Hajj N (2020) DNA methylation biomarkers in aging and age-related diseases. Front Genet 11:171. https://doi.org/10.3389/fgene.2020.00171
doi: 10.3389/fgene.2020.00171 pubmed: 32211026 pmcid: 7076122
Bergsma T, Rogaeva E (2020) DNA methylation clocks and their predictive capacity for aging phenotypes and healthspan. Neurosci Insights 15:263310552094222. https://doi.org/10.1177/2633105520942221
doi: 10.1177/2633105520942221
Hillary RF, Stevenson AJ, McCartney DL et al (2020) Epigenetic measures of ageing predict the prevalence and incidence of leading causes of death and disease burden. Clin Epigenetics 12:115. https://doi.org/10.1186/s13148-020-00905-6
doi: 10.1186/s13148-020-00905-6 pubmed: 32736664 pmcid: 7394682
Li S, Wong EM, Joo JE et al (2015) Genetic and environmental causes of variation in the difference between biological age based on DNA methylation and chronological age for middle-aged women. Twin Res Hum Genet 18:720–726. https://doi.org/10.1017/thg.2015.75
doi: 10.1017/thg.2015.75 pubmed: 26527295
Lu AT, Xue L, Salfati EL et al (2018) GWAS of epigenetic aging rates in blood reveals a critical role for TERT. Nat Commun 9:387. https://doi.org/10.1038/s41467-017-02697-5
doi: 10.1038/s41467-017-02697-5 pubmed: 29374233 pmcid: 5786029
Li S, Nguyen TL, Wong EM et al (2020) Genetic and environmental causes of variation in epigenetic aging across the lifespan. Clin Epigenetics 12:158. https://doi.org/10.1186/s13148-020-00950-1
doi: 10.1186/s13148-020-00950-1 pubmed: 33092643 pmcid: 7583207
Mitteldorf JJ (2013) How does the body know how old it is? Introducing the epigenetic clock hypothesis. Biochem Mosc 78:1048–1053. https://doi.org/10.1134/S0006297913090113
doi: 10.1134/S0006297913090113
Jones MJ, Goodman SJ, Kobor MS (2015) DNA methylation and healthy human aging. Aging Cell 14:924–932. https://doi.org/10.1111/acel.12349
doi: 10.1111/acel.12349 pubmed: 25913071 pmcid: 4693469
Woźniak A, Heidegger A, Piniewska-Róg D et al (2021) Development of the VISAGE enhanced tool and statistical models for epigenetic age estimation in blood, buccal cells and bones. Aging 13(5):6459–6484. https://doi.org/10.18632/aging.202783
doi: 10.18632/aging.202783 pubmed: 33707346 pmcid: 7993733
Spencer RL, Hutchison KE (1999) Alcohol, aging, and the stress response. Alcohol Res Health J Natl Inst Alcohol Abuse Alcohol 23:272–283
Laramée P, Leonard S, Buchanan-Hughes A et al (2015) Risk of all-cause mortality in alcohol-dependent individuals: a systematic literature review and meta-analysis. EBioMedicine 2:1394–1404. https://doi.org/10.1016/j.ebiom.2015.08.040
doi: 10.1016/j.ebiom.2015.08.040 pubmed: 26629534 pmcid: 4634361
Fiorito G, McCrory C, Robinson O et al (2019) Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis. Aging 11:2045–2070. https://doi.org/10.18632/aging.101900
doi: 10.18632/aging.101900 pubmed: 31009935 pmcid: 6503871
Dixit S, Whooley MA, Vittinghoff E et al (2019) Alcohol consumption and leukocyte telomere length. Sci Rep 9:1404. https://doi.org/10.1038/s41598-019-38904-0
doi: 10.1038/s41598-019-38904-0 pubmed: 30723310 pmcid: 6363724
Martins de Carvalho L, Wiers CE, Manza P et al (2019) Effect of alcohol use disorder on cellular aging. Psychopharmacology 236:3245–3255. https://doi.org/10.1007/s00213-019-05281-5
doi: 10.1007/s00213-019-05281-5 pubmed: 31161452
Yamaki N, Matsushita S, Hara S et al (2019) Telomere shortening in alcohol dependence: Roles of alcohol and acetaldehyde. J Psychiatr Res 109:27–32. https://doi.org/10.1016/j.jpsychires.2018.11.007
doi: 10.1016/j.jpsychires.2018.11.007 pubmed: 30466069
Simpkin AJ, Hemani G, Suderman M et al (2016) Prenatal and early life influences on epigenetic age in children: a study of mother–offspring pairs from two cohort studies. Hum Mol Genet 25:191–201. https://doi.org/10.1093/hmg/ddv456
doi: 10.1093/hmg/ddv456 pubmed: 26546615
Beach SRH, Dogan MV, Lei M-K et al (2015) Methylomic aging as a window onto the influence of lifestyle: tobacco and alcohol use alter the rate of biological aging. J Am Geriatr Soc 63:2519–2525. https://doi.org/10.1111/jgs.13830
doi: 10.1111/jgs.13830 pubmed: 26566992 pmcid: 4906951
Quach A, Levine ME, Tanaka T et al (2017) Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging 9:419–446. https://doi.org/10.18632/aging.101168
doi: 10.18632/aging.101168 pubmed: 28198702 pmcid: 5361673
Volpato S, Pahor M, Ferrucci L et al (2004) Relationship of alcohol intake with inflammatory markers and plasminogen activator inhibitior-1 in well-functioning older adults: the health, aging, and body composition study. Circulation 109:607–612. https://doi.org/10.1161/01.CIR.0000109503.13955.00
doi: 10.1161/01.CIR.0000109503.13955.00 pubmed: 14769682
Luo A, Jung J, Longley M et al (2020) Epigenetic aging is accelerated in alcohol use disorder and regulated by genetic variation in APOL2. Neuropsychopharmacology 45:327–336. https://doi.org/10.1038/s41386-019-0500-y
doi: 10.1038/s41386-019-0500-y pubmed: 31466081
Masser DR, Berg AS, Freeman WM (2013) Focused, high accuracy 5-methylcytosine quantitation with base resolution by benchtop next-generation sequencing. Epigenetics Chromatin 6:33. https://doi.org/10.1186/1756-8935-6-33
doi: 10.1186/1756-8935-6-33 pubmed: 24279302 pmcid: 3907040
Zbieć-Piekarska R, Spólnicka M, Kupiec T et al (2015) Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci Int Genet 17:173–179. https://doi.org/10.1016/j.fsigen.2015.05.001
doi: 10.1016/j.fsigen.2015.05.001 pubmed: 26026729
Spólnicka M, Pośpiech E, Adamczyk JG et al (2018) Modified aging of elite athletes revealed by analysis of epigenetic age markers. Aging 10:241–252. https://doi.org/10.18632/aging.101385
doi: 10.18632/aging.101385 pubmed: 29466246 pmcid: 5842850
R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-roject.org/
Phillips C (2015) Forensic genetic analysis of bio-geographical ancestry. Forensic Sci Int Genet 18:49–65. https://doi.org/10.1016/j.fsigen.2015.05.012
doi: 10.1016/j.fsigen.2015.05.012 pubmed: 26013312
Kayser M (2015) Forensic DNA Phenotyping: predicting human appearance from crime scene material for investigative purposes. Forensic Sci Int Genet 18:33–48. https://doi.org/10.1016/j.fsigen.2015.02.003
doi: 10.1016/j.fsigen.2015.02.003 pubmed: 25716572
Freire-Aradas A, Phillips C, Lareu MV (2017) Forensic individual age estimation with DNA: from initial approaches to methylation tests. Forensic Sci Rev 29:121–144
pubmed: 28691915
Schneider PM, Prainsack B, Kayser M (2019) The use of forensic DNA phenotyping in predicting appearance and biogeographic ancestry. Dtsch Aerzteblatt Online. https://doi.org/10.3238/arztebl.2019.0873
doi: 10.3238/arztebl.2019.0873
Tharakan R, Ubaida-Mohien C, Moore AZ et al (2020) Blood DNA methylation and aging: a cross-sectional analysis and longitudinal validation in the InCHIANTI study. J Gerontol Ser A 75:2051–2055. https://doi.org/10.1093/gerona/glaa052
doi: 10.1093/gerona/glaa052
Ugalde AP, Ramsay AJ, de la Rosa J et al (2011) Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53: regulatory circuitry involving miR-29 and p53. EMBO J 30:2219–2232. https://doi.org/10.1038/emboj.2011.124
doi: 10.1038/emboj.2011.124 pubmed: 21522133 pmcid: 3117645
Heidegger A, Xavier C, Niederstätter H et al (2020) Development and optimization of the VISAGE basic prototype tool for forensic age estimation. Forensic Sci Int Genet 48:102322. https://doi.org/10.1016/j.fsigen.2020.102322
doi: 10.1016/j.fsigen.2020.102322 pubmed: 32574993
Spólnicka M, Pośpiech E, Pepłońska B et al (2018) DNA methylation in ELOVL2 and C1orf132 correctly predicted chronological age of individuals from three disease groups. Int J Legal Med 132:1–11. https://doi.org/10.1007/s00414-017-1636-0
doi: 10.1007/s00414-017-1636-0 pubmed: 28725932
Spólnicka M, Piekarska RZ, Jaskuła E et al (2016) Donor age and C1orf132/MIR29B2C determine age-related methylation signature of blood after allogeneic hematopoietic stem cell transplantation. Clin Epigenetics 8:93. https://doi.org/10.1186/s13148-016-0257-7
doi: 10.1186/s13148-016-0257-7 pubmed: 27602173 pmcid: 5012039
Vadigepalli R, Hoek JB (2018) Introduction to the virtual issue alcohol and epigenetic regulation: do the products of alcohol metabolism drive epigenetic control of gene expression in alcohol-related disorders? Alcohol Clin Exp Res 42:845–848. https://doi.org/10.1111/acer.13630
doi: 10.1111/acer.13630 pubmed: 29532481 pmcid: 5915906
Resendiz M, Mason S, Lo C-L, Zhou FC (2014) Epigenetic regulation of the neural transcriptome and alcohol interference during development. Front Genet 5:285. https://doi.org/10.3389/fgene.2014.00285
doi: 10.3389/fgene.2014.00285 pubmed: 25206361 pmcid: 4144008
Lunde ER, Washburn SE, Golding MC et al (2016) Alcohol-induced developmental origins of adult-onset diseases. Alcohol Clin Exp Res 40:1403–1414. https://doi.org/10.1111/acer.13114
doi: 10.1111/acer.13114 pubmed: 27254466 pmcid: 5067080
Auta J, Zhang H, Pandey SC, Guidotti A (2017) Chronic alcohol exposure differentially alters one-carbon metabolism in rat liver and brain. Alcohol Clin Exp Res 41:1105–1111. https://doi.org/10.1111/acer.13382
doi: 10.1111/acer.13382 pubmed: 28369960 pmcid: 5494979
Hagerty SL, Bidwell LC, Harlaar N, Hutchison KE (2016) An exploratory association study of alcohol use disorder and DNA methylation. Alcohol Clin Exp Res 40:1633–1640. https://doi.org/10.1111/acer.13138
doi: 10.1111/acer.13138 pubmed: 27388583 pmcid: 5108727
Rosen AD, Robertson KD, Hlady RA et al (2018) DNA methylation age is accelerated in alcohol dependence. Transl Psychiatry 8:182. https://doi.org/10.1038/s41398-018-0233-4
doi: 10.1038/s41398-018-0233-4 pubmed: 30185790 pmcid: 6125381

Auteurs

Danuta Piniewska-Róg (D)

Jagiellonian University Medical College, Faculty of Medicine, Department of Forensic Medicine, Grzegórzecka 16, 31-531, Krakow, Poland.

Antonia Heidegger (A)

Institute of Legal Medicine, Medical University of Innsbruck, Muellerstrasse 44, 6020, Innsbruck, Austria.

Ewelina Pośpiech (E)

Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-348, Krakow, Poland.

Catarina Xavier (C)

Institute of Legal Medicine, Medical University of Innsbruck, Muellerstrasse 44, 6020, Innsbruck, Austria.

Aleksandra Pisarek (A)

Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-348, Krakow, Poland.

Agata Jarosz (A)

Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-348, Krakow, Poland.

Anna Woźniak (A)

Central Forensic Laboratory of the Police, Aleje Ujazdowskie 7, 00-583, Warsaw, Poland.

Marta Wojtas (M)

Jagiellonian University Medical College, Faculty of Medicine, Department of Forensic Medicine, Grzegórzecka 16, 31-531, Krakow, Poland.

Christopher Phillips (C)

Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782, Santiago de Compostela, Spain.

Manfred Kayser (M)

Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.

Walther Parson (W)

Institute of Legal Medicine, Medical University of Innsbruck, Muellerstrasse 44, 6020, Innsbruck, Austria.
Forensic Science Program, The Pennsylvania State University, 13 Thomas Building, University Park, PA, 16802, USA.

Wojciech Branicki (W)

Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-348, Krakow, Poland. wojciech.branicki@uj.edu.pl.
Central Forensic Laboratory of the Police, Aleje Ujazdowskie 7, 00-583, Warsaw, Poland. wojciech.branicki@uj.edu.pl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH