Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial.
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
08 2021
08 2021
Historique:
received:
19
12
2020
accepted:
28
06
2021
pubmed:
14
8
2021
medline:
18
9
2021
entrez:
13
8
2021
Statut:
ppublish
Résumé
A randomized, double-blind, placebo-controlled, 52-week study (no. NCT03068468) evaluated gosuranemab, an anti-tau monoclonal antibody, in the treatment of progressive supranuclear palsy (PSP). In total, 486 participants dosed were assigned to either gosuranemab (n = 321) or placebo (n = 165). Efficacy was not demonstrated on adjusted mean change of PSP Rating Scale score at week 52 between gosuranemab and placebo (10.4 versus 10.6, P = 0.85, primary endpoint), or at secondary endpoints, resulting in discontinuation of the open-label, long-term extension. Unbound N-terminal tau in cerebrospinal fluid decreased by 98% with gosuranemab and increased by 11% with placebo (P < 0.0001). Incidences of adverse events and deaths were similar between groups. This well-powered study suggests that N-terminal tau neutralization does not translate into clinical efficacy.
Identifiants
pubmed: 34385707
doi: 10.1038/s41591-021-01455-x
pii: 10.1038/s41591-021-01455-x
doi:
Substances chimiques
Antibodies, Monoclonal, Humanized
0
MAPT protein, human
0
tau Proteins
0
gosuranemab
09FZ7Q0PQZ
Banques de données
ClinicalTrials.gov
['NCT03068468']
Types de publication
Clinical Trial, Phase II
Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1451-1457Commentaires et corrections
Type : CommentIn
Type : ErratumIn
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Boxer, A. L. et al. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol. 16, 552–563 (2017).
pubmed: 28653647
pmcid: 5802400
doi: 10.1016/S1474-4422(17)30157-6
Höglinger, G. U. et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov. Disord. 32, 853–864 (2017).
pubmed: 28467028
pmcid: 5516529
doi: 10.1002/mds.26987
Picillo, M. et al. Motor, cognitive and behavioral differences in MDS PSP phenotypes. J. Neurol. 266, 1727–1735 (2019).
pubmed: 30989369
doi: 10.1007/s00415-019-09324-x
Golbe, L. I. Progressive supranuclear palsy. Semin. Neurol. 34, 151–159 (2014).
pubmed: 24963674
doi: 10.1055/s-0034-1381736
Litvan, I. et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47, 1–9 (1996).
pubmed: 8710059
doi: 10.1212/WNL.47.1.1
Golbe, L. I. & Ohman-Strickland, P. A. A clinical rating scale for progressive supranuclear palsy. Brain 130, 1552–1565 (2007).
pubmed: 17405767
doi: 10.1093/brain/awm032
Respondek, G. et al. Accuracy of the National Institute for Neurological Disorders and Stroke/Society for Progressive Supranuclear Palsy and neuroprotection and natural history in Parkinson plus syndromes criteria for the diagnosis of progressive supranuclear palsy. Mov. Disord. 28, 504–509 (2013).
pubmed: 23436751
doi: 10.1002/mds.25327
Dickson, D. W., Ahmed, Z., Algom, A. A., Tsuboi, Y. & Josephs, K. A. Neuropathology of variants of progressive supranuclear palsy. Curr. Opin. Neurol. 23, 394–400 (2010).
pubmed: 20610990
doi: 10.1097/WCO.0b013e32833be924
Dickson, D. W. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med. 2, a009258 (2012).
pubmed: 22908195
pmcid: 3405828
doi: 10.1101/cshperspect.a009258
Fuster-Matanzo, A., Hernández, F. & Ávila, J. Tau spreading mechanisms; implications for dysfunctional tauopathies. Int. J. Mol. Sci. 19, 645 (2018).
pmcid: 5877506
doi: 10.3390/ijms19030645
Meredith, J. E. Jr. et al. Characterization of novel CSF tau and ptau biomarkers for Alzheimer’s disease. PLoS One 8, e76523 (2013).
pubmed: 24116116
doi: 10.1371/journal.pone.0076523
Bright, J. et al. Human secreted tau increases amyloid-beta production. Neurobiol. Aging 36, 693–709 (2015).
pubmed: 25442111
doi: 10.1016/j.neurobiolaging.2014.09.007
Sato, C. et al. Tau kinetics in neurons and the human central nervous system. Neuron 97, 1284–1298 (2018).
pubmed: 29566794
pmcid: 6137722
doi: 10.1016/j.neuron.2018.02.015
Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013).
pubmed: 23690619
pmcid: 3677441
doi: 10.1073/pnas.1301175110
Mocanu, M. M. et al. The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous tau in inducible mouse models of tauopathy. J. Neurosci. 28, 737–748 (2008).
pubmed: 18199773
pmcid: 6670355
doi: 10.1523/JNEUROSCI.2824-07.2008
Sanders, D. W. et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82, 1271–1288 (2014).
pubmed: 24857020
pmcid: 4171396
doi: 10.1016/j.neuron.2014.04.047
Golonzhka, O. et al. Functional characterization of anti-tau monoclonal antibody BIIB092. Presented at 14th International Conference on Alzheimer’s and Parkinson’s Diseases (26–31 March, 2019, Lisbon, Portugal).
Czerkowicz, J. et al. Pharmacokinetic and target engagement analysis of anti-tau antibody gosuranemab [BIIB092] in cynomolgus monkey central nervous system fluid compartments. Alzheimers Dement. 15, 1288–1289 (2019).
doi: 10.1016/j.jalz.2019.06.3697
Qureshi, I. A. et al. A randomized, single ascending dose study of intravenous BIIB092 in healthy participants. Alzheimers Dement. 4, 746–755 (2018).
doi: 10.1016/j.trci.2018.10.007
Boxer, A. L. et al. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol. 18, 549–558 (2019).
pubmed: 31122495
doi: 10.1016/S1474-4422(19)30139-5
Boxer, A. L. et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 13, 676–685 (2014).
pubmed: 24873720
pmcid: 4129545
doi: 10.1016/S1474-4422(14)70088-2
Papapetropoulos, S., Singer, C., McCorquodale, D., Gonzalez, J. & Mash, D. C. Cause, seasonality of death and co-morbidities in progressive supranuclear palsy (PSP). Parkinsonism Relat. Disord. 11, 459–463 (2005).
pubmed: 16154793
doi: 10.1016/j.parkreldis.2005.06.003
Höglinger, G. U. et al. Longitudinal magnetic resonance imaging in progressive supranuclear palsy: a new combined score for clinical trials. Mov. Disord. 32, 842–852 (2017).
pubmed: 28436538
pmcid: 5808453
doi: 10.1002/mds.26973
Whitwell, J. L. et al. Radiological biomarkers for diagnosis in PSP: where are we and where do we need to be? Mov. Disord. 32, 955–971 (2017).
pubmed: 28500751
pmcid: 5511762
doi: 10.1002/mds.27038
Josephs, K. A. et al. Modeling trajectories of regional volume loss in progressive supranuclear palsy. Mov. Disord. 28, 1117–1124 (2013).
pubmed: 23568852
doi: 10.1002/mds.25437
Tsai, R. M. et al. Clinical correlates of longitudinal brain atrophy in progressive supranuclear palsy. Parkinsonism Relat. Disord. 28, 29–35 (2016).
pubmed: 27132501
pmcid: 4914401
doi: 10.1016/j.parkreldis.2016.04.006
Tolosa, E. et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov. Disord. 29, 470–478 (2014).
pubmed: 24532007
doi: 10.1002/mds.25824
Doble, A. The pharmacology and mechanism of action of riluzole. Neurology 47, S233–S241 (1996).
pubmed: 8959995
doi: 10.1212/WNL.47.6_Suppl_4.233S
Bensimon, G. et al. Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 132, 156–171 (2009).
pubmed: 19029129
doi: 10.1093/brain/awn291
Vaswani, P. A. & Olsen, A. L. Immunotherapy in progressive supranuclear palsy. Curr. Opin. Neurol. 33, 527–533 (2020).
pubmed: 32657895
pmcid: 7722007
doi: 10.1097/WCO.0000000000000836
Schrag, A. et al. Measuring quality of life in PSP: the PSP-QoL. Neurology 67, 39–44 (2006).
pubmed: 16832075
doi: 10.1212/01.wnl.0000223826.84080.97
Goetz, C. G. et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23, 2129–2170 (2008).
pubmed: 19025984
doi: 10.1002/mds.22340
Shoeibi, A. et al. Are the International Parkinson disease and Movement Disorder Society progressive supranuclear palsy (IPMDS-PSP) diagnostic criteria accurate enough to differentiate common PSP phenotypes? Parkinsonism Relat. Disord. 69, 34–39 (2019).
pubmed: 31665686
pmcid: 6914266
doi: 10.1016/j.parkreldis.2019.10.012
Respondek, G. et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov. Disord. 29, 1758–1766 (2014).
pubmed: 25370486
doi: 10.1002/mds.26054
Martínez-Martín, P. et al. Parkinson’s disease severity levels and MDS-Unified Parkinson’s Disease Rating Scale. Parkinsonism Relat. Disord. 21, 50–54 (2015).
pubmed: 25466406
doi: 10.1016/j.parkreldis.2014.10.026
Busner, J. & Targum, S. D. The clinical global impressions scale: applying a research tool in clinical practice. Psychiatry 4, 28–37 (2007).
pubmed: 20526405
pmcid: 2880930
Mamarabadi, M., Razjouyan, H. & Golbe, L. I. Is the latency from progressive supranuclear palsy onset to diagnosis improving? Mov. Disord. Clin. Pract. 5, 603–606 (2018).
pubmed: 30637280
pmcid: 6277372
doi: 10.1002/mdc3.12678
Armstrong, R. A. Visual signs and symptoms of progressive supranuclear palsy. Clin. Exp. Optom. 94, 150–160 (2011).
pubmed: 20629667
doi: 10.1111/j.1444-0938.2010.00504.x
Respondek, G. et al. Which ante mortem clinical features predict progressive supranuclear palsy pathology? Mov. Disord. 32, 995–1005 (2017).
pubmed: 28500752
pmcid: 5543934
doi: 10.1002/mds.27034
Ali, F. et al. Sensitivity and specificity of diagnostic criteria for progressive supranuclear palsy. Mov. Disord. 34, 1144–1153 (2019).
pubmed: 30726566
pmcid: 6688972
doi: 10.1002/mds.27619
Höglinger, G. U. et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat. Genet. 43, 699–705 (2011).
pubmed: 21685912
pmcid: 3125476
doi: 10.1038/ng.859
Sopko, R. et al. Characterization of tau binding by gosuranemab. Neurobiol. Dis. 146, 105120 (2020).
pubmed: 32991997
doi: 10.1016/j.nbd.2020.105120
Bright, J. et al. Human secreted tau increases amyloid-beta production. Neurobiol. Aging 36, 693–709 (2015).
pubmed: 25442111
doi: 10.1016/j.neurobiolaging.2014.09.007
Gómez-Ramos, A., Díaz-Hernández, M., Cuadros, R., Hernández, F. & Avila, J. Extracellular tau is toxic to neuronal cells. FEBS Lett. 580, 4842–4850 (2006).
pubmed: 16914144
doi: 10.1016/j.febslet.2006.07.078
Gómez-Ramos, A., Díaz-Hernández, M., Rubio, A., Miras-Portugal, M. T. & Avila, J. Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol. Cell. Neurosci. 37, 673–681 (2008).
pubmed: 18272392
doi: 10.1016/j.mcn.2007.12.010
Gibbons, G. S., Lee, V. M. Y. & Trojanowski, J. Q. Mechanisms of cell-to-cell transmission of pathological tau: a review. JAMA Neurol. 76, 101–108 (2019).
pubmed: 30193298
pmcid: 6382549
doi: 10.1001/jamaneurol.2018.2505
Yamada, K. Extracellular tau and its potential role in the propagation of tau pathology. Front. Neurosci. 11, 667 (2017).
pubmed: 29238289
pmcid: 5712583
doi: 10.3389/fnins.2017.00667
Courade, J. P. et al. Epitope determines efficacy of therapeutic anti-tau antibodies in a functional assay with human Alzheimer tau. Acta Neuropathol. 136, 729–745 (2018).
pubmed: 30238240
pmcid: 6208734
doi: 10.1007/s00401-018-1911-2
Guo, J. L. et al. Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice. J. Exp. Med. 213, 2635–2654 (2016).
pubmed: 27810929
pmcid: 5110027
doi: 10.1084/jem.20160833
Czerkowicz, J. et al. Anti-tau antibody BIIB092 binds secreted tau in preclinical models and Alzheimer’s disease cerebrospinal fluid. Alzheimers Dement. 14, P1441 (2018); https://alz-journals.onlinelibrary.wiley.com/doi/10.1016/j.jalz.2018.06.2423
Scheres, S. H., Zhang, W., Falcon, B. & Goedert, M. Cryo-EM structures of tau filaments. Curr. Opin. Struct. Biol. 64, 17–25 (2020).
pubmed: 32603876
doi: 10.1016/j.sbi.2020.05.011
Höglinger, G. U. et al. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurol. 20, 182–192 (2021).
pubmed: 33609476
doi: 10.1016/S1474-4422(20)30489-0
Hall, S. et al. Cerebrospinal fluid concentrations of inflammatory markers in Parkinson’s disease and atypical parkinsonian disorders. Sci. Rep. 8, 13276 (2018).
pubmed: 30185816
pmcid: 6125576
doi: 10.1038/s41598-018-31517-z
Hall, S. et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 69, 1445–1452 (2012).
pubmed: 22925882
doi: 10.1001/archneurol.2012.1654
Wagshal, D. et al. Divergent CSF τ alterations in two common tauopathies: Alzheimer’s disease and progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 86, 244–250 (2015).
pubmed: 24899730
doi: 10.1136/jnnp-2014-308004
Kovacs, G. G. Invited review: neuropathology of tauopathies: principles and practice. Neuropathol. Appl. Neurobiol. 41, 3–23 (2015).
pubmed: 25495175
doi: 10.1111/nan.12208
Shoeibi, A., Olfati, N. & Litvan, I. Preclinical, phase I, and phase II investigational clinical trials for treatment of progressive supranuclear palsy. Expert Opin. Investig. Drugs 27, 349–361 (2018).
pubmed: 29602288
doi: 10.1080/13543784.2018.1460356
Grimm, M. J. et al. Movement Disorder Society-Endorsed PSP Study Group. Clinical conditions ‘suggestive of progressive supranuclear palsy’—diagnostic performance. Mov. Disord. https://doi.org/10.1002/mds.28263 (2020).
D’Elia, L. F., Satz, P., Uchiyama, C. L. & White, T. Color Trails Test. Professional Manual (Psychological Assessment Resources, 1996).
Wolz, R., Aljabar, P., Hajnal, J. V., Hammers, A. & Rueckert, D. LEAP: learning embeddings for atlas propagation. Neuroimage 49, 1316–1325 (2010).
pubmed: 19815080
doi: 10.1016/j.neuroimage.2009.09.069
Guy, W. ECDEU Assessment Manual for Psychopharmacology (US Department of Health, Education, and Welfare, 1976).
Karantzoulis, S., Novitski, J., Gold, M. & Randolph, C. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): utility in detection and characterization of mild cognitive impairment due to Alzheimer’s disease. Arch. Clin. Neuropsychol. 28, 837–844 (2013).
pubmed: 23867976
doi: 10.1093/arclin/act057
Dal Bello-Haas, V., Klassen, L., Sheppard, M. S. & Metcalfe, A. Psychometric properties of activity, self-efficacy, and quality-of-life measures in individuals with Parkinson disease. Physiother. Can. 63, 47–57 (2011).
pubmed: 22210979
pmcid: 3024195
doi: 10.3138/ptc.2009-08
Miller, E. Verbal fluency as a function of a measure of verbal intelligence and in relation to different types of cerebral pathology. Br. J. Clin. Psychol. 23, 53–57 (1984).
pubmed: 6697028
doi: 10.1111/j.2044-8260.1984.tb00626.x
Stamelou, M. et al. Power calculations and placebo effect for future clinical trials in progressive supranuclear palsy. Mov. Disord. 31, 742–747 (2016).
pubmed: 26948290
pmcid: 5289149
doi: 10.1002/mds.26580