Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial.


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
08 2021
Historique:
received: 19 12 2020
accepted: 28 06 2021
pubmed: 14 8 2021
medline: 18 9 2021
entrez: 13 8 2021
Statut: ppublish

Résumé

A randomized, double-blind, placebo-controlled, 52-week study (no. NCT03068468) evaluated gosuranemab, an anti-tau monoclonal antibody, in the treatment of progressive supranuclear palsy (PSP). In total, 486 participants dosed were assigned to either gosuranemab (n = 321) or placebo (n = 165). Efficacy was not demonstrated on adjusted mean change of PSP Rating Scale score at week 52 between gosuranemab and placebo (10.4 versus 10.6, P = 0.85, primary endpoint), or at secondary endpoints, resulting in discontinuation of the open-label, long-term extension. Unbound N-terminal tau in cerebrospinal fluid decreased by 98% with gosuranemab and increased by 11% with placebo (P < 0.0001). Incidences of adverse events and deaths were similar between groups. This well-powered study suggests that N-terminal tau neutralization does not translate into clinical efficacy.

Identifiants

pubmed: 34385707
doi: 10.1038/s41591-021-01455-x
pii: 10.1038/s41591-021-01455-x
doi:

Substances chimiques

Antibodies, Monoclonal, Humanized 0
MAPT protein, human 0
tau Proteins 0
gosuranemab 09FZ7Q0PQZ

Banques de données

ClinicalTrials.gov
['NCT03068468']

Types de publication

Clinical Trial, Phase II Journal Article Randomized Controlled Trial Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1451-1457

Commentaires et corrections

Type : CommentIn
Type : ErratumIn

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Boxer, A. L. et al. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol. 16, 552–563 (2017).
pubmed: 28653647 pmcid: 5802400 doi: 10.1016/S1474-4422(17)30157-6
Höglinger, G. U. et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov. Disord. 32, 853–864 (2017).
pubmed: 28467028 pmcid: 5516529 doi: 10.1002/mds.26987
Picillo, M. et al. Motor, cognitive and behavioral differences in MDS PSP phenotypes. J. Neurol. 266, 1727–1735 (2019).
pubmed: 30989369 doi: 10.1007/s00415-019-09324-x
Golbe, L. I. Progressive supranuclear palsy. Semin. Neurol. 34, 151–159 (2014).
pubmed: 24963674 doi: 10.1055/s-0034-1381736
Litvan, I. et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47, 1–9 (1996).
pubmed: 8710059 doi: 10.1212/WNL.47.1.1
Golbe, L. I. & Ohman-Strickland, P. A. A clinical rating scale for progressive supranuclear palsy. Brain 130, 1552–1565 (2007).
pubmed: 17405767 doi: 10.1093/brain/awm032
Respondek, G. et al. Accuracy of the National Institute for Neurological Disorders and Stroke/Society for Progressive Supranuclear Palsy and neuroprotection and natural history in Parkinson plus syndromes criteria for the diagnosis of progressive supranuclear palsy. Mov. Disord. 28, 504–509 (2013).
pubmed: 23436751 doi: 10.1002/mds.25327
Dickson, D. W., Ahmed, Z., Algom, A. A., Tsuboi, Y. & Josephs, K. A. Neuropathology of variants of progressive supranuclear palsy. Curr. Opin. Neurol. 23, 394–400 (2010).
pubmed: 20610990 doi: 10.1097/WCO.0b013e32833be924
Dickson, D. W. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med. 2, a009258 (2012).
pubmed: 22908195 pmcid: 3405828 doi: 10.1101/cshperspect.a009258
Fuster-Matanzo, A., Hernández, F. & Ávila, J. Tau spreading mechanisms; implications for dysfunctional tauopathies. Int. J. Mol. Sci. 19, 645 (2018).
pmcid: 5877506 doi: 10.3390/ijms19030645
Meredith, J. E. Jr. et al. Characterization of novel CSF tau and ptau biomarkers for Alzheimer’s disease. PLoS One 8, e76523 (2013).
pubmed: 24116116 doi: 10.1371/journal.pone.0076523
Bright, J. et al. Human secreted tau increases amyloid-beta production. Neurobiol. Aging 36, 693–709 (2015).
pubmed: 25442111 doi: 10.1016/j.neurobiolaging.2014.09.007
Sato, C. et al. Tau kinetics in neurons and the human central nervous system. Neuron 97, 1284–1298 (2018).
pubmed: 29566794 pmcid: 6137722 doi: 10.1016/j.neuron.2018.02.015
Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013).
pubmed: 23690619 pmcid: 3677441 doi: 10.1073/pnas.1301175110
Mocanu, M. M. et al. The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous tau in inducible mouse models of tauopathy. J. Neurosci. 28, 737–748 (2008).
pubmed: 18199773 pmcid: 6670355 doi: 10.1523/JNEUROSCI.2824-07.2008
Sanders, D. W. et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82, 1271–1288 (2014).
pubmed: 24857020 pmcid: 4171396 doi: 10.1016/j.neuron.2014.04.047
Golonzhka, O. et al. Functional characterization of anti-tau monoclonal antibody BIIB092. Presented at 14th International Conference on Alzheimer’s and Parkinson’s Diseases (26–31 March, 2019, Lisbon, Portugal).
Czerkowicz, J. et al. Pharmacokinetic and target engagement analysis of anti-tau antibody gosuranemab [BIIB092] in cynomolgus monkey central nervous system fluid compartments. Alzheimers Dement. 15, 1288–1289 (2019).
doi: 10.1016/j.jalz.2019.06.3697
Qureshi, I. A. et al. A randomized, single ascending dose study of intravenous BIIB092 in healthy participants. Alzheimers Dement. 4, 746–755 (2018).
doi: 10.1016/j.trci.2018.10.007
Boxer, A. L. et al. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol. 18, 549–558 (2019).
pubmed: 31122495 doi: 10.1016/S1474-4422(19)30139-5
Boxer, A. L. et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 13, 676–685 (2014).
pubmed: 24873720 pmcid: 4129545 doi: 10.1016/S1474-4422(14)70088-2
Papapetropoulos, S., Singer, C., McCorquodale, D., Gonzalez, J. & Mash, D. C. Cause, seasonality of death and co-morbidities in progressive supranuclear palsy (PSP). Parkinsonism Relat. Disord. 11, 459–463 (2005).
pubmed: 16154793 doi: 10.1016/j.parkreldis.2005.06.003
Höglinger, G. U. et al. Longitudinal magnetic resonance imaging in progressive supranuclear palsy: a new combined score for clinical trials. Mov. Disord. 32, 842–852 (2017).
pubmed: 28436538 pmcid: 5808453 doi: 10.1002/mds.26973
Whitwell, J. L. et al. Radiological biomarkers for diagnosis in PSP: where are we and where do we need to be? Mov. Disord. 32, 955–971 (2017).
pubmed: 28500751 pmcid: 5511762 doi: 10.1002/mds.27038
Josephs, K. A. et al. Modeling trajectories of regional volume loss in progressive supranuclear palsy. Mov. Disord. 28, 1117–1124 (2013).
pubmed: 23568852 doi: 10.1002/mds.25437
Tsai, R. M. et al. Clinical correlates of longitudinal brain atrophy in progressive supranuclear palsy. Parkinsonism Relat. Disord. 28, 29–35 (2016).
pubmed: 27132501 pmcid: 4914401 doi: 10.1016/j.parkreldis.2016.04.006
Tolosa, E. et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov. Disord. 29, 470–478 (2014).
pubmed: 24532007 doi: 10.1002/mds.25824
Doble, A. The pharmacology and mechanism of action of riluzole. Neurology 47, S233–S241 (1996).
pubmed: 8959995 doi: 10.1212/WNL.47.6_Suppl_4.233S
Bensimon, G. et al. Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 132, 156–171 (2009).
pubmed: 19029129 doi: 10.1093/brain/awn291
Vaswani, P. A. & Olsen, A. L. Immunotherapy in progressive supranuclear palsy. Curr. Opin. Neurol. 33, 527–533 (2020).
pubmed: 32657895 pmcid: 7722007 doi: 10.1097/WCO.0000000000000836
Schrag, A. et al. Measuring quality of life in PSP: the PSP-QoL. Neurology 67, 39–44 (2006).
pubmed: 16832075 doi: 10.1212/01.wnl.0000223826.84080.97
Goetz, C. G. et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23, 2129–2170 (2008).
pubmed: 19025984 doi: 10.1002/mds.22340
Shoeibi, A. et al. Are the International Parkinson disease and Movement Disorder Society progressive supranuclear palsy (IPMDS-PSP) diagnostic criteria accurate enough to differentiate common PSP phenotypes? Parkinsonism Relat. Disord. 69, 34–39 (2019).
pubmed: 31665686 pmcid: 6914266 doi: 10.1016/j.parkreldis.2019.10.012
Respondek, G. et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov. Disord. 29, 1758–1766 (2014).
pubmed: 25370486 doi: 10.1002/mds.26054
Martínez-Martín, P. et al. Parkinson’s disease severity levels and MDS-Unified Parkinson’s Disease Rating Scale. Parkinsonism Relat. Disord. 21, 50–54 (2015).
pubmed: 25466406 doi: 10.1016/j.parkreldis.2014.10.026
Busner, J. & Targum, S. D. The clinical global impressions scale: applying a research tool in clinical practice. Psychiatry 4, 28–37 (2007).
pubmed: 20526405 pmcid: 2880930
Mamarabadi, M., Razjouyan, H. & Golbe, L. I. Is the latency from progressive supranuclear palsy onset to diagnosis improving? Mov. Disord. Clin. Pract. 5, 603–606 (2018).
pubmed: 30637280 pmcid: 6277372 doi: 10.1002/mdc3.12678
Armstrong, R. A. Visual signs and symptoms of progressive supranuclear palsy. Clin. Exp. Optom. 94, 150–160 (2011).
pubmed: 20629667 doi: 10.1111/j.1444-0938.2010.00504.x
Respondek, G. et al. Which ante mortem clinical features predict progressive supranuclear palsy pathology? Mov. Disord. 32, 995–1005 (2017).
pubmed: 28500752 pmcid: 5543934 doi: 10.1002/mds.27034
Ali, F. et al. Sensitivity and specificity of diagnostic criteria for progressive supranuclear palsy. Mov. Disord. 34, 1144–1153 (2019).
pubmed: 30726566 pmcid: 6688972 doi: 10.1002/mds.27619
Höglinger, G. U. et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat. Genet. 43, 699–705 (2011).
pubmed: 21685912 pmcid: 3125476 doi: 10.1038/ng.859
Sopko, R. et al. Characterization of tau binding by gosuranemab. Neurobiol. Dis. 146, 105120 (2020).
pubmed: 32991997 doi: 10.1016/j.nbd.2020.105120
Bright, J. et al. Human secreted tau increases amyloid-beta production. Neurobiol. Aging 36, 693–709 (2015).
pubmed: 25442111 doi: 10.1016/j.neurobiolaging.2014.09.007
Gómez-Ramos, A., Díaz-Hernández, M., Cuadros, R., Hernández, F. & Avila, J. Extracellular tau is toxic to neuronal cells. FEBS Lett. 580, 4842–4850 (2006).
pubmed: 16914144 doi: 10.1016/j.febslet.2006.07.078
Gómez-Ramos, A., Díaz-Hernández, M., Rubio, A., Miras-Portugal, M. T. & Avila, J. Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol. Cell. Neurosci. 37, 673–681 (2008).
pubmed: 18272392 doi: 10.1016/j.mcn.2007.12.010
Gibbons, G. S., Lee, V. M. Y. & Trojanowski, J. Q. Mechanisms of cell-to-cell transmission of pathological tau: a review. JAMA Neurol. 76, 101–108 (2019).
pubmed: 30193298 pmcid: 6382549 doi: 10.1001/jamaneurol.2018.2505
Yamada, K. Extracellular tau and its potential role in the propagation of tau pathology. Front. Neurosci. 11, 667 (2017).
pubmed: 29238289 pmcid: 5712583 doi: 10.3389/fnins.2017.00667
Courade, J. P. et al. Epitope determines efficacy of therapeutic anti-tau antibodies in a functional assay with human Alzheimer tau. Acta Neuropathol. 136, 729–745 (2018).
pubmed: 30238240 pmcid: 6208734 doi: 10.1007/s00401-018-1911-2
Guo, J. L. et al. Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice. J. Exp. Med. 213, 2635–2654 (2016).
pubmed: 27810929 pmcid: 5110027 doi: 10.1084/jem.20160833
Czerkowicz, J. et al. Anti-tau antibody BIIB092 binds secreted tau in preclinical models and Alzheimer’s disease cerebrospinal fluid. Alzheimers Dement. 14, P1441 (2018); https://alz-journals.onlinelibrary.wiley.com/doi/10.1016/j.jalz.2018.06.2423
Scheres, S. H., Zhang, W., Falcon, B. & Goedert, M. Cryo-EM structures of tau filaments. Curr. Opin. Struct. Biol. 64, 17–25 (2020).
pubmed: 32603876 doi: 10.1016/j.sbi.2020.05.011
Höglinger, G. U. et al. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurol. 20, 182–192 (2021).
pubmed: 33609476 doi: 10.1016/S1474-4422(20)30489-0
Hall, S. et al. Cerebrospinal fluid concentrations of inflammatory markers in Parkinson’s disease and atypical parkinsonian disorders. Sci. Rep. 8, 13276 (2018).
pubmed: 30185816 pmcid: 6125576 doi: 10.1038/s41598-018-31517-z
Hall, S. et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 69, 1445–1452 (2012).
pubmed: 22925882 doi: 10.1001/archneurol.2012.1654
Wagshal, D. et al. Divergent CSF τ alterations in two common tauopathies: Alzheimer’s disease and progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 86, 244–250 (2015).
pubmed: 24899730 doi: 10.1136/jnnp-2014-308004
Kovacs, G. G. Invited review: neuropathology of tauopathies: principles and practice. Neuropathol. Appl. Neurobiol. 41, 3–23 (2015).
pubmed: 25495175 doi: 10.1111/nan.12208
Shoeibi, A., Olfati, N. & Litvan, I. Preclinical, phase I, and phase II investigational clinical trials for treatment of progressive supranuclear palsy. Expert Opin. Investig. Drugs 27, 349–361 (2018).
pubmed: 29602288 doi: 10.1080/13543784.2018.1460356
Grimm, M. J. et al. Movement Disorder Society-Endorsed PSP Study Group. Clinical conditions ‘suggestive of progressive supranuclear palsy’—diagnostic performance. Mov. Disord. https://doi.org/10.1002/mds.28263 (2020).
D’Elia, L. F., Satz, P., Uchiyama, C. L. & White, T. Color Trails Test. Professional Manual (Psychological Assessment Resources, 1996).
Wolz, R., Aljabar, P., Hajnal, J. V., Hammers, A. & Rueckert, D. LEAP: learning embeddings for atlas propagation. Neuroimage 49, 1316–1325 (2010).
pubmed: 19815080 doi: 10.1016/j.neuroimage.2009.09.069
Guy, W. ECDEU Assessment Manual for Psychopharmacology (US Department of Health, Education, and Welfare, 1976).
Karantzoulis, S., Novitski, J., Gold, M. & Randolph, C. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): utility in detection and characterization of mild cognitive impairment due to Alzheimer’s disease. Arch. Clin. Neuropsychol. 28, 837–844 (2013).
pubmed: 23867976 doi: 10.1093/arclin/act057
Dal Bello-Haas, V., Klassen, L., Sheppard, M. S. & Metcalfe, A. Psychometric properties of activity, self-efficacy, and quality-of-life measures in individuals with Parkinson disease. Physiother. Can. 63, 47–57 (2011).
pubmed: 22210979 pmcid: 3024195 doi: 10.3138/ptc.2009-08
Miller, E. Verbal fluency as a function of a measure of verbal intelligence and in relation to different types of cerebral pathology. Br. J. Clin. Psychol. 23, 53–57 (1984).
pubmed: 6697028 doi: 10.1111/j.2044-8260.1984.tb00626.x
Stamelou, M. et al. Power calculations and placebo effect for future clinical trials in progressive supranuclear palsy. Mov. Disord. 31, 742–747 (2016).
pubmed: 26948290 pmcid: 5289149 doi: 10.1002/mds.26580

Auteurs

Tien Dam (T)

Biogen, Cambridge, MA, USA. tien.dam@biogen.com.

Adam L Boxer (AL)

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.

Lawrence I Golbe (LI)

Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.

Günter U Höglinger (GU)

Department of Neurology, Technische Universität München, Munich, Germany.
German Center for Neurodegenerative Diseases, Munich, Germany.
Department of Neurology, Hanover Medical School, Hanover, Germany.

Huw R Morris (HR)

National Hospital for Neurology and Neurosurgery, London, UK.

Irene Litvan (I)

University of California, Parkinson and Other Movement Disorders Center, San Diego, CA, USA.

Anthony E Lang (AE)

Edmond J. Safra Program in Parkinson's Disease and the Rossy PSP Centre, Toronto Western Hospital and the University of Toronto, Toronto, Ontario, Canada.

Jean-Christophe Corvol (JC)

Sorbonne Université, Assistance Publique Hôpitaux de Paris, INSERM, CNRS, Institut du Cerveau - Paris Brain Institute - ICM, Hôpital Pitié-Salpêtrière, Paris, France.

Ikuko Aiba (I)

Department of Neurology, National Hospital Organization Higashinagoya National Hospital, Nagoya, Japan.

Michael Grundman (M)

University of California, Parkinson and Other Movement Disorders Center, San Diego, CA, USA.
Global R&D Partners, LLC, San Diego, CA, USA.

Lili Yang (L)

Biogen, Cambridge, MA, USA.

Beth Tidemann-Miller (B)

Biogen, Cambridge, MA, USA.

Joseph Kupferman (J)

Biogen, Cambridge, MA, USA.

Kristine Harper (K)

Biogen, Cambridge, MA, USA.

Michael J Wald (MJ)

Biogen, Cambridge, MA, USA.

Danielle L Graham (DL)

Biogen, Cambridge, MA, USA.

Liz Gedney (L)

Biogen, Cambridge, MA, USA.

John O'Gorman (J)

Biogen, Cambridge, MA, USA.

Samantha Budd Haeberlein (SB)

Biogen, Cambridge, MA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH