Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow.


Journal

NeuroImage
ISSN: 1095-9572
Titre abrégé: Neuroimage
Pays: United States
ID NLM: 9215515

Informations de publication

Date de publication:
15 11 2021
Historique:
received: 19 03 2021
revised: 08 07 2021
accepted: 03 08 2021
pubmed: 7 8 2021
medline: 11 1 2022
entrez: 6 8 2021
Statut: ppublish

Résumé

When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods.

Identifiants

pubmed: 34358660
pii: S1053-8119(21)00725-4
doi: 10.1016/j.neuroimage.2021.118451
pmc: PMC9933001
mid: NIHMS1741412
pii:
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

118451

Subventions

Organisme : NIBIB NIH HHS
ID : T32 EB001628
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB017230
Pays : United States
Organisme : Wellcome Trust
ID : 215944/Z/19/Z
Pays : United Kingdom
Organisme : NCRR NIH HHS
ID : UL1 RR024975
Pays : United States
Organisme : Wellcome Trust
Pays : United Kingdom

Informations de copyright

Copyright © 2021. Published by Elsevier Inc.

Références

Magn Reson Med. 2021 Jul;86(1):456-470
pubmed: 33533094
Neuroimage. 2017 Feb 15;147:703-725
pubmed: 28034765
Cortex. 2014 Jul;56:73-84
pubmed: 23137651
Sci Rep. 2016 Nov 28;6:37847
pubmed: 27892534
J Magn Reson Imaging. 2003 Oct;18(4):427-33
pubmed: 14508779
Magn Reson Med. 2004 Nov;52(5):979-93
pubmed: 15508154
Neuroimage. 2013 Jun;73:239-54
pubmed: 22846632
Nat Methods. 2014 Oct;11(10):1058-63
pubmed: 25194848
Magn Reson Med. 2002 Jun;47(6):1202-10
pubmed: 12111967
NMR Biomed. 2017 Dec;30(12):
pubmed: 28915311
Acta Neurochir (Wien). 2019 Jun;161(6):1125-1137
pubmed: 31004240
Med Image Anal. 2020 Oct;65:101761
pubmed: 32622304
Proc Natl Acad Sci U S A. 2015 May 19;112(20):E2695-704
pubmed: 25947150
Neuroimage. 2017 Jan 1;144(Pt A):58-73
pubmed: 27639350
Brain Struct Funct. 2019 May;224(4):1553-1567
pubmed: 30847641
IEEE Trans Med Imaging. 2014 Feb;33(2):384-99
pubmed: 24132007
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):9-17
pubmed: 18982584
Magn Reson Med. 2021 Dec;86(6):3304-3320
pubmed: 34270123
Neuroimage. 2021 Oct 15;240:118367
pubmed: 34237442
Neuroimage. 2020 Dec;223:117329
pubmed: 32882375
Neuroimage. 2011 Feb 14;54(4):2854-66
pubmed: 21094686
Neuroimage. 2018 Dec;183:239-253
pubmed: 30086412
Neuroimage. 2019 Jan 1;184:180-200
pubmed: 30205206
Neuroimage Clin. 2017 Jun 15;15:659-672
pubmed: 28664037
Neuroimage. 2019 Oct 1;199:1-17
pubmed: 31132451
IEEE Trans Med Imaging. 2019 Jul;38(7):1599-1609
pubmed: 30676953
Magn Reson Med. 2005 May;53(5):1088-95
pubmed: 15844157
Neuroimage. 2019 Jan 1;184:140-160
pubmed: 30193974
Hum Brain Mapp. 2020 May;41(7):1859-1874
pubmed: 31925871
Neuroimage. 2018 Nov 15;182:8-38
pubmed: 29793061
Neuroimage. 2018 Jan 15;165:200-221
pubmed: 29074279
NMR Biomed. 2019 Apr;32(4):e3841
pubmed: 29193413
Brain Struct Funct. 2017 May;222(4):1645-1662
pubmed: 27581617
NMR Biomed. 2019 Apr;32(4):e3785
pubmed: 28945294
Neuroimage. 2016 Jul 15;135:311-23
pubmed: 27138209
Neuroimage. 2012 Jul 16;61(4):1083-99
pubmed: 22414992
PLoS One. 2013 Dec 30;8(12):e83847
pubmed: 24386292
Magn Reson Med. 1999 Sep;42(3):515-25
pubmed: 10467296
Hum Brain Mapp. 2018 Nov;39(11):4213-4227
pubmed: 29962049
Neuroimage. 2019 Oct 15;200:89-100
pubmed: 31228638
Lect Notes Monogr Ser. 2019;2019:193-201
pubmed: 34456460
Neuroimage. 2010 Jul 15;51(4):1384-94
pubmed: 20338248
Brain Connect. 2012;2(6):345-55
pubmed: 23075313
Neuroimage. 2017 Nov 1;161:149-170
pubmed: 28826946
Magn Reson Med. 1999 Nov;42(5):952-62
pubmed: 10542355
Front Neuroanat. 2016 May 24;10:58
pubmed: 27252628
Sci Rep. 2019 Mar 11;9(1):4046
pubmed: 30858451
Comput Diffus MRI (2018). 2019;2019:183-191
pubmed: 34278385
Sci Data. 2020 May 27;7(1):157
pubmed: 32461581
Neuroimage. 2013 Oct 15;80:105-24
pubmed: 23668970
Neuroimage. 2003 Oct;20(2):870-88
pubmed: 14568458
J Magn Reson Imaging. 2008 Apr;27(4):685-91
pubmed: 18302232
Biomed Eng Online. 2020 Jan 15;19(1):4
pubmed: 31941515
Magn Reson Med. 2004 Apr;51(4):807-15
pubmed: 15065255
Magn Reson Imaging. 2013 Jul;31(6):827-39
pubmed: 23623031
Neuroimage. 2006 Jul 15;31(4):1487-505
pubmed: 16624579
Brain Imaging Behav. 2018 Feb;12(1):284-295
pubmed: 28176263
Neuroimage. 2012 Aug 15;62(2):782-90
pubmed: 21979382
Magn Reson Med. 2020 Oct;84(4):2174-2189
pubmed: 32250475
NMR Biomed. 2010 Aug;23(7):803-20
pubmed: 20886566
Psychiatry Res. 2011 Dec 30;194(3):363-371
pubmed: 22078796
Neuroimage. 2019 Nov 15;202:116137
pubmed: 31473352
Top Magn Reson Imaging. 2010 Apr;21(2):87-99
pubmed: 21613874
Front Neuroinform. 2014 Feb 21;8:8
pubmed: 24600385
IEEE Trans Med Imaging. 2010 Sep;29(9):1626-35
pubmed: 20304721
Neuroimage. 2021 Jan 15;225:117406
pubmed: 33045335
Neuron. 2014 Feb 5;81(3):700-13
pubmed: 24485097
Med Image Anal. 2019 Dec;58:101559
pubmed: 31542711
Brain Struct Funct. 2013 Jan;218(1):21-37
pubmed: 22200882
Neuroimage Clin. 2019;23:101883
pubmed: 31163386
J Magn Reson Imaging. 2020 Jan;51(1):234-249
pubmed: 31179595
Neuroimage. 2020 Nov 1;221:117128
pubmed: 32673745
Biomed Eng Online. 2020 Jun 3;19(1):42
pubmed: 32493483
PLoS One. 2012;7(11):e49790
pubmed: 23166771
Neuroimage. 2018 Sep;178:57-68
pubmed: 29758339
Brain Struct Funct. 2020 May;225(4):1413-1436
pubmed: 32180019
Neuroimage Clin. 2018 Aug 13;20:458-465
pubmed: 30128284
Sci Rep. 2020 Oct 13;10(1):17149
pubmed: 33051471
NMR Biomed. 2013 Dec;26(12):1775-86
pubmed: 24038308
Sci Data. 2019 May 23;6(1):69
pubmed: 31123325
Magn Reson Med. 2003 Jan;49(1):7-12
pubmed: 12509814
Front Integr Neurosci. 2019 Jul 17;13:24
pubmed: 31417372
Neuroimage. 2020 Jul 1;214:116704
pubmed: 32151760
PLoS One. 2013 Nov 15;8(11):e80713
pubmed: 24348913
J Neural Eng. 2020 Feb 18;17(1):011001
pubmed: 31931484
Cereb Cortex. 2012 Aug;22(8):1894-903
pubmed: 21955921
J Intern Med. 2016 Jun;279(6):576-91
pubmed: 26940242
Korean J Radiol. 2018 Jul-Aug;19(4):777-782
pubmed: 29962884
NMR Biomed. 2002 Nov-Dec;15(7-8):494-515
pubmed: 12489098
NMR Biomed. 2019 Apr;32(4):e3998
pubmed: 30321478
JCO Clin Cancer Inform. 2020 Mar;4:299-309
pubmed: 32216636
Radiology. 1996 Dec;201(3):637-48
pubmed: 8939209
Neuroimage. 2008 Aug 15;42(2):617-25
pubmed: 18583153
Neuroimage. 2007 Jul 1;36(3):630-44
pubmed: 17481925
Front Neuroanat. 2018 Nov 06;12:94
pubmed: 30459566
J Magn Reson Imaging. 2007 Sep;26(3):756-67
pubmed: 17729339
Neuroimage. 2006 Nov 15;33(3):867-77
pubmed: 17000119
Neuroimage. 2007 Jul 15;36(4):1123-38
pubmed: 17532649
Neuroimage. 2021 Nov;243:118502
pubmed: 34433094
Neuroimage. 2018 Apr 15;170:283-295
pubmed: 28712994
J Cogn Neurosci. 2007 Sep;19(9):1498-507
pubmed: 17714011
Med Image Comput Comput Assist Interv. 2019 Oct;11766:599-608
pubmed: 32558816
Neuroimage. 2019 Jul 15;195:285-299
pubmed: 30716459
Neuroimage. 2020 Apr 15;210:116534
pubmed: 31931157
Brain Struct Funct. 2016 Dec;221(9):4705-4721
pubmed: 26754839
Neuroimage. 2020 Aug 15;217:116923
pubmed: 32407993
Hum Brain Mapp. 2019 Jul;40(10):3041-3057
pubmed: 30875144
IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75
pubmed: 18041271
Neuroimage. 2012 Apr 2;60(2):1412-25
pubmed: 22270351

Auteurs

Kurt G Schilling (KG)

Department of Radiology & Radiological Science, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States. Electronic address: kurt.g.schilling.1@vumc.org.

Chantal M W Tax (CMW)

Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom.

Francois Rheault (F)

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States.

Colin Hansen (C)

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States.

Qi Yang (Q)

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States.

Fang-Cheng Yeh (FC)

Department of Neurological Surgery, University of Pittsburgh, United States.

Leon Cai (L)

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States.

Adam W Anderson (AW)

Department of Radiology & Radiological Science, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.

Bennett A Landman (BA)

Department of Radiology & Radiological Science, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH