T2-weighted turbo spin-echo magnetic resonance imaging of canine brain anatomy at 1.5T, 3T, and 7T field strengths.
canine brain magnetic resonance imaging
magnetic field strength
ultra-high-field MRI
Journal
Anatomical record (Hoboken, N.J. : 2007)
ISSN: 1932-8494
Titre abrégé: Anat Rec (Hoboken)
Pays: United States
ID NLM: 101292775
Informations de publication
Date de publication:
01 2022
01 2022
Historique:
revised:
10
06
2021
received:
26
09
2020
accepted:
20
06
2021
pubmed:
7
8
2021
medline:
1
4
2022
entrez:
6
8
2021
Statut:
ppublish
Résumé
Post-mortem T2 weighted images of canine heads were acquired at 1.5T, 3T, and 7T. This study aimed to (1) identify anatomical structures of the canine brain using an ultra-high-field magnetic resonance imaging (MRI) (7T) to help to facilitate their localization on high field MRI images (3T and 1.5T), where these structures may appear less well defined and delineated and (2) evaluate the visibility of canine brain anatomical structures on 1.5T, 3T, and 7T MRI images for optimizing clinical utility. Our hypothesis was that the provided subjective image quality comparison at different field strengths may offer a general baseline for canine brain anatomy and may help clinicians evaluate MRI options better. Six canine heads were examined with 1.5T, 3T, and 7T MRI scanners. T2-weighted images were acquired in three orthogonal planes at each field strength using a turbo spin-echo sequence. Fifty neuroanatomic structures were identified and evaluated on the 7T MR images; subsequently, those were found on the 3T and 45 out of the 50 structures were detected on the 1.5T imaging. The structures that were not able to be identified on the 1.5T imaging included the septum pellucidum, oculomotor nucleus, substantia nigra, claustrum, and thalamic nucleus griseus. Images acquired at 7T were subjective of higher spatial and contrast resolution. However, the ultra-high-field images were prone to artifacts at the interface between tissues of different magnetic properties. In conclusion, 3T MR imaging appears to be the best comprise for evaluating canine brain anatomy on MRI with fewer imaging artifacts.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
222-233Informations de copyright
© 2021 American Association for Anatomy.
Références
Anaya Garcia, M. S., Hernandez Anaya, J. S., Marrufo Melendez, O., Velazquez Ramirez, J. L., Palacios, A. R., & (2015). In vivo study of cerebral white matter in the dog using diffusion tensor tractography. Veterinary Radiology & Ultrasound, 56(2), 188-195.
Barone, R., & Bortolami, R. (2004). Anatomie comparée des mammifères domestiques, Tome 6, Neurologie 1: Système Nerveux Central. Paris, France: Vigot Frères.
Beisteiner, R., Robinson, S., Wurnig, M., Hilbert, M., Merksa, K., Rath, J., … Geissler, A. (2011). Clinical fMRI: Evidence for a 7T benefit over 3T. NeuroImage, 57(3), 1015-1021.
Biller, J. R., Mitchell, D. G., Tseytlin, M., Elajaili, H., Rinard, G. A., Quine, R. W., … Eaton, G. R. (2016). Rapid scan electron paramagnetic resonance opens new avenues for imaging physiologically important parameters in vivo. Journal of Visualized Experiments, 26(115). https://doi.org/10.3791/54068.
Bogner, W., Chmelik, M., Andronesi, O. C., Sorensen, A. G., Trattnig, S., & Gruber, S. (2011). In vivo 31P spectroscopy by fully adiabatic extended image selected in vivo spectroscopy: A comparison between 3T and 7T. Magnetic Resonance in Medicine, 66(4), 923-930.
Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2012). The essential physics of medical imaging (3rd ed., p. 1048). Philadelphia, PA: Lippincott Williams & Wilkins ISBN 9780781780575.
Czeibert, K., Baksa, G., Grimm, A., Nagy, S. A., Kubinyi, E., & Petneházy, Ö. (2019). MRI, CT and high resolution macro-anatomical images with cryosectioning of a beagle brain: Creating the base of a multimodal imaging atlas. PLoS One, 14(3), e0213458.
Datta, R., Lee, J., Duda, J., Avants, B. B., Vite, C. H., Tseng, B., … Aguirre, G. K. (2012). A digital atlas of the dog brain. PLoS One, 7(12), e52140.
DeLano, M. C., & Fisher, C. (2006). 3T MR imaging of the brain. Magnetic Resonance Imaging Clinics of North America, 14(1), 77-88.
Dennis, R. (1998). Magnetic resonance imaging and its applications in small animals. In Practice, 20, 117-124.
Dennis, R. (2003). Advanced imaging: Indications for CT and MRI in veterinary patients. In Practice, 25, 243-254.
Di Francesco, M. W. (2008). Comparison of SNR and CNR for in vivo mouse brain imaging at 3 and 7 T using well matched scanner configurations. Medical Physics, 35(9), 3972-3978. https://doi.org/10.1118/1.2968092
Dong, Q., Welsh, R., Chenevert, T., Carlos, R., Maly-Sundgren, P., Gomez-Hassan, D., & Mukherji, S. (2004). Clinical applications of diffusion tensor imaging. Journal of Magnetic Resonance Imaging, 19, 6-18.
Goncalves, N. R., Ban, H., Sánchez-Panchuelo, R. M., Francis, S. T., Schluppeck, D., & Welchman, A. E. (2015). 7Tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex. The Journal of Neuroscience, 35(7), 3056-3072.
Heberlein, K. A., & Hu, X. (2004). Simultaneous acquisition of gradient-echo and asymmetric spin-echo for single-shot z-shim: Z-SAGA. Magnetic Resonance in Medicine, 51(1), 212-216. https://doi.org/10.1002/mrm.10680
Jacqmot, O., Van Thielen, B., Fierens, Y., Hammond, M., Willekens, I., Van Schuerbeek, P., … de Mey, J. (2013). Diffusion tensor imaging of white matter tracts in the dog brain. The Anatomical Record, 296, 340-349.
Jacqmot, O., Van Thielen, B., Michotte, A., Willekens, I., Verhelle, F., Goossens, P., … de Mey, J. (2017). Comparison of several White matter tracts in feline and canine brain by using magnetic resonance diffusion tensor imaging. The Anatomical Record, 300(7), 1270-1289.
Johnson, P. J., Luh, W. M., Rivard, B. C., Graham, K. L., White, A., Fitz-Maurice, M., … Barry, E. F. (2020). Stereotactic cortical atlas of the domestic canine brain. Scientific Reports, 10(1), 4781. https://doi.org/10.1038/s41598-020-61665-0
Kang, B. T., Ko, K. J., Jang, D. P., Han, J. Y., Lim, C. Y., Park, C., … Park, H. M. (2009). Magnetic resonance imaging of the canine brain at 7T. Veterinary Radiology & Ultrasound, 50(6), 615-621.
Kang, M. H., Lim, C. Y., Park, C., Yoo, J. H., Kim, D. Y., & Park, H. M. (2009). 7.0-Tesla tesla magnetic resonance imaging of granulomatous meningoencephalitis in a Maltese dog: A comparison with 0.2 and 1.5-tesla. The Journal of Veterinary Medical Science, 71(11), 1545-1548.
Kastler, B., Vetter, D., & Gangi, A. (1994). Artéfacts en imagerie par résonnance magnétique. In Principes de l'IRM. Manuel d'auto-apprentissage (pp. 117-131). Paris: Masson.
Keiper, M. D., Grossman, R. I., Hirsch, J. A., Bolinger, L., Ott, I. L., Mannon, L. J., … Kolson, D. L. (1998). MR identification of white matter abnormalities in multiple sclerosis: A comparison between 1.5T and 4 T. AJNR. American Journal of Neuroradiology, 19(8), 1489-1493.
Li, T. Q., van Gelderen, P., Merkle, H., Talagala, L., Koretsky, A. P., & Duyn, J. (2006). Extensive heterogeneity in white matter intensity in high-resolution T2*-weighted MRI of the human brain at 7.0 T. NeuroImage, 32(3), 1032-1040.
Luijten, P. R., & Klomp, D. W. (2011). High field MRI in clinical practice. Drug Discovery Today: Technologies, 8(2-4), e103-e108.
Mai, W. (2018). Diagnostic MRI in dogs and cats (p. 766). Boca Raton, Florida: CRC Press ISBN 9781498737708.
Martin-Vaquero, P., Da Costa, R. C., Echandi, R. L., Tosti, C. L., Knopp, M. V., & Sammet, S. (2011a). Magnetic resonance imaging of the canine brain at 3 and 7T. Veterinary Radiology & Ultrasound, 52(1), 25-32.
Martin-Vaquero, P., Da Costa, R. C., Echandi, R. L., Tosti, C. L., Knopp, M. V., & Sammet, S. (2011b). Time-of-flight magnetic resonance angiography of the canine brain at 3.0 tesla and 7.0 tesla. American Journal of Veterinary Research, 72(3), 350-356.
Metcalf, M., Xu, D., Okuda, D. T., Carvajal, L., Srinivasan, R., Kelley, D. A., … Pelletier, D. (2010). High-resolution phased-array MRI of the human brain at 7Tesla: Initial experience in multiple sclerosis patients. Journal of Neuroimaging, 20(2), 141-147.
Murray, R. C. (2010). Equine MRI. Oxford, UK: Wiley-Blackwell ISBN: 978-1-444-32920-9.
Nitzsche, B., Boltze, J., Ludewig, E., Flegel, T., Schmidt, M. J., Seeger, J., … Schulze, S. (2019). A stereotaxic breed-averaged, symmetric T2w canine brain atlas including detailed morphological and volumetrical data sets. NeuroImage, 15(187), 93-103. https://doi.org/10.1016/j.neuroimage.2018.01.066
Novak, P., Novak, V., Kangarlu, A., Abduljalil, A. M., Chakeres, D. W., & Robitaille, P. M. (2001). High resolution MRI of the brainstem at 8 T. Journal of Computer Assisted Tomography, 25(2), 242-246.
Pieri, V., Trovatelli, M., Cadioli, M., Zani, D. D., Brizzola, S., Ravasio, G., … Castellano, A. (2019). In vivo diffusion tensor magnetic resonance tractography of the sheep brain: An atlas of the ovine white matter fiber bundles. Frontiers in Veterinary Science, 6, 345. https://doi.org/10.3389/fvets.2019.00345
Robitaille, P. M., Abduljalil, A. M., & Kangarlu, A. (2000). Ultra-high resolution imaging of the human head at 8 tesla: 2K x 2K for Y2K. Journal of Computer Assisted Tomography, 24(1), 2-8.
Robitaille, P. M., Abduljalil, A. M., Kangarlu, A., Zhang, X., Yu, Y., Burgess, R., … Spigos, D. (1998). Human magnetic resonance imaging at 8 T. NMR in Biomedicine, 11(6), 263-265.
Ródenas, S., Pumarola, M., Gaitero, L., Zamora, A., & Añor, S. (2011). Magnetic resonance imaging findings in 40 dogs with histologically confirmed intracranial tumours. Veterinary Journal, 187(1), 85-91.
Schenck, J. F. (1996). The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Medical Physics, 23, 815-850.
Schmitz, B. L., Grön, G., Brausewetter, F., Hoffmann, M. H., & Aschoff, A. J. (2005). Enhancing gray-to-white matter contrast in 3T T1 spin-echo brain scans by optimizing flip angle. AJNR. American Journal of Neuroradiology, 26(8), 2000-2004.
Schuenke, M., Schulte, E., & Schumacher, U. (2010). Head and neuroanatomy. In Thieme atlas of anatomy. Stuttgart, New York: Thieme.
Springer, E., Dymerska, B., Cardoso, P. L., Robinson, S. D., Weisstanner, C., Wiest, R., … Trattnig, S. (2016). Comparison of routine brain imaging at 3T and 7T. Investigative Radiology, 51(8), 469-482.
Stafford RJ. 2004. High field MRI: Technology applications safety and limitations. Texas: The University of Texas M. D. Anderson Cancer Center, Houston, TX. http://www.aapm.org/meetings/05am/pdf/18-2826-94182-387.pdf.
Sturges, B. K., Dickinson, P. J., Bollen, A. W., Koblik, P. D., Kass, P. H., Kortz, G. D., … Higgins, R. J. (2008). Magnetic resonance imaging and histological classification of intracranial meningiomas in 112 dogs. Journal of Veterinary Internal Medicine, 22(3), 586-595.
Sun, S. W., Neil, J .J., Liang, H. F., He, Y. Y., Schmidt, R. E., & Hsu, C. Y. (2005). Formalin fixation alters water diffusion coefficient magnitude but not anisotropy in infracted brain. Magn. Reson. Med., 53, 1447-1451. https://doi.org/10.1002/mrm.20488
Thomas, D. L., De Vita, E., Roberts, S., Turner, R., Yousry, T. A., & Ordidge, R. J. (2004). High-resolution fast spin echo imaging of the human brain at 4.7 T: Implementation and sequence characteristics. Magnetic Resonance in Medicine, 51(6), 1254-1264. https://doi.org/10.1002/mrm.20106
Trattnig, S., Springer, E., Bogner, W., Hangel, G., Strasser, B., Dymerska, B., … Robinson, S. D. (2018). Key clinical benefits of neuroimaging at 7T. NeuroImage, 168, 477-489.
Van Thielen, B., Visser, F., Denolin, V., Antoine, N., Engelen, V., Luitjen, P., & Jacqmot, O. (2010). Comparison of MRI cerebral images obtained at 7T in a dog to macroscopic and histopathological examination. Paper presented at the European veterinary diagnostic imaging annual meeting 2010, Giessen, Germany.
Vaughan, J. T., Garwood, M., Collins, C. M., Liu, W., DelaBarre, L., Adriany, G., … Ugurbil, K. (2001). 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magnetic Resonance in Medicine, 46(1), 24-30.
Wisner, E., & Zwingenberger, A. (2015). Atlas of small animal CT and MRI (p. 704). Ames, Iowa: Wiley-Blackwell ISBN 978-1-118-44617-1.
Zaiss, M., Windschuh, J., Paech, D., Meissner, J. E., Burth, S., Schmitt, B., … Radbruch, A. (2015). Relaxation-compensated CEST-MRI of the human brain at 7T: Unbiased insight into NOE and amide signal changes in human glioblastoma. NeuroImage, 112, 180-188.