A review of limitations to using cassava meal in poultry diets and the potential role of exogenous microbial enzymes.


Journal

Tropical animal health and production
ISSN: 1573-7438
Titre abrégé: Trop Anim Health Prod
Pays: United States
ID NLM: 1277355

Informations de publication

Date de publication:
02 Aug 2021
Historique:
received: 08 04 2021
accepted: 09 07 2021
entrez: 2 8 2021
pubmed: 3 8 2021
medline: 5 8 2021
Statut: epublish

Résumé

Cassava (Manihot esculenta), a crop grown in the tropics, is increasingly becoming a vital feed resource for human beings and livestock. Traditionally, cassava has been used primarily as a source of food for humans. However, it is becoming an increasingly important ingredient in livestock feed. The use of cassava leaves and roots in poultry diets is limited because of nutrient imbalances and toxins (hydrogen cyanide (HCN)) found in them. High HCN is reduced to innocuous levels by processing the ingredient using a simple sun drying method. Plant fibre content can be reduced and made available for use by poultry through the use of exogenous enzymes. More recent innovative interventions in biotechnology have brought about various exogenous enzymes that can help improve the digestibility of fibrous diets. These include, among others, carbohydrases, proteases and phytases. The extent to which the animals utilise nutrients is influenced by the type of enzyme and the physicochemical properties of the feed ingredient. This review aims to collate information on the current state of knowledge on the use of exogenous microbial enzymes in diets containing cassava and how the enzymes that target carbohydrates might be useful in making nutrient available for poultry.

Identifiants

pubmed: 34338935
doi: 10.1007/s11250-021-02853-6
pii: 10.1007/s11250-021-02853-6
doi:

Substances chimiques

Hydrogen Cyanide 2WTB3V159F

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

426

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Abu, O. A., Olaleru, I. F. and Omojola, A. B., 2015. Carcass characteristics and meat quality in broilers fed cassava peel and leaf meals as replacements for maize and soyabean meal. Available from  http://www.iosrjournals.org/iosr-javs/papers/vol8-issue3/Version-2/I08324146.pdf . Date Accessed 2020-10-03
Adeola, O. and Cowieson, A. J., 2011. Opportunities and challenges of using exogenous enzymes to improve non-ruminant animal production. Board Invited Review. Journal of Animal Science, 89(10), 3189–218. https://doi.org/10.2527/jas.2010-3715
Adeyemi, O. A., Jimoh, B. and Olufade, O. O., 2013. Soybean meal replacement with cassava leaf: blood meal mix with or without enzyme in broiler diets. Archivos de zootecnia, 62(238), 275-85. https://doi.org/10.4321/S0004-05922013000200013
doi: 10.4321/S0004-05922013000200013
Adeyemo, I. A. and Sani, A., 2013. Physical appearance and organoleptic properties of poultry meat fed Aspergillus niger hydrolyzsed hydrolysed cassava peel meal based diet. International Journal of Agricultural Policy and Research, 1(6),166 –171. Available from  https://journalissues.org/wp-content/uploads/2013/08/Adeyemo-and-Sani.pdf . Accessed 2020-10-29
Aengwanich, W. and Boonsorn, T., 2017. Effect of tannic acid extracted from cassava (Manihot esculenta crantz) leaves on productive performance, intestinal microorganisms and villi morphometry in broilers: A preliminary study. International Journal of Poultry Science, 16, 50 - 55. Available from  https://scialert.net/abstract/?doi=ijps.2017.50.55 . Accessed 2020-09-17
Afoakwa, E. O., Asiedu, C., Budu, A. S., Chiwona-Karltun, L. and Nyirendah, D. B., 2012. Chemical composition and cyanogenic potential of traditional and high yielding CMD resistant cassava (Manihot esculenta Crantz) varieties. International Food Research Journal, 19(1), 175-81.
Agunbiade, J. A., Susenbeth, A. and Sudekum, K. H., 2004. Comparative nutritive value of cassava leaf meal, soya beans, fish meal and casein in diets for growing pigs. Journal of Animal Physiology and Animal Nutriton, 88(1‐2), 30-8. https://doi.org/10.1046/j.0931-2439.2003.00454.x
doi: 10.1046/j.0931-2439.2003.00454.x
Aina, A. B. J. and Fanimo, A. O., 1997. Substitution of maize with cassava and sweet potato meal as the energy source in the rations of layer birds. Pertanika Journal of Tropical Agricultural Science, 20, 163 - 168. Available from http://psasir.upm.edu.my/id/eprint/3646/1/Substitution_of_Maize_with_Cassava_and_Sweet_Potato_Meal_as_the_Energy.pdf . Accessed 2020-09-29
Alwala, J. O., Kiema, F. N. and Wanzala, W., 2014. Determination of tannin concentrations in African indigenous vegetables, grains and cassava roots from Emuhaya district, western Kenya. Available from http://41.89.101.166:8080/xmlui/bitstream/handle/123456789/2551/Kiema.,%202014(1).pdf?sequence=1&isAllowed=y . Accessed 2020-09-27
Anaeto, M. and Adighibe, L. C., 2011. Cassava root meal as substitute for maizse maise in layers ration. Brazilian Journal of Poultry Science, 13(2), 153-156. https://doi.org/10.1590/S1516-635X2011000200010
doi: 10.1590/S1516-635X2011000200010
Asaoka, M., Blanshard, J. M. and Rickard, J. E., 1991. Seasonal effects on the physico‐chemical properties of starch from four cultivars of cassava. Starch‐Stärke, 43(12), 455-9. https://doi.org/10.1002/star.19910431202
doi: 10.1002/star.19910431202
Avwioroko, O. J., Anigboro, A. A., Unachukwu, N. N. and Tonukari, N.J., 2018. Isolation, identification and in silico analysis of alpha-amylase gene of Aspergillus niger strain CSA35 obtained from cassava undergoing spoilage. Biochemistry and Biophysics Reports, 14, 35-42. https://doi.org/10.1016/j.bbrep.2018.03.006
doi: 10.1016/j.bbrep.2018.03.006 pubmed: 29872732 pmcid: 5986626
Bairoch, A., 2000. The ENZYME database in 2000. Nucleic Acids Research, 28(1), 304–305. https://doi.org/10.1093/nar/28.1.304
Bakare, A. G., Cawaki, P., Ledua, I., Kour, G., Jimenez, V., Sharma, A. and Tamani, E., 2020. Acceptability, Growth performance and Nutritional status of chickens fed cassava leaf meal-based diets. Tropical Animal Health and Production, 52(5): 2481-2489. https://doi.org/10.1007/s11250-020-02274-x
doi: 10.1007/s11250-020-02274-x pubmed: 32367487
Bedford, M. R., and Partridge, G. G., 2001. Enzymes in farm animal nutrition. Cabi eBooks. https://doi.org/10.1079/9780851993935.0000
Bhuiyan, M. M. and Iji, P. A., 2015. Energy value of cassava products in broiler chicken diets with or without enzyme supplementation. Asian-Australasian Journal of Animal Sciences, 28(9), 1317-1326. https://doi.org/10.5713/ajas.14.0915
doi: 10.5713/ajas.14.0915 pubmed: 26194227 pmcid: 4554873
Bhuiyan, M. M., Romero, L. F. and Iji, P. A., 2012. Maximizing the energy value of cassava products in diets for broiler chickens. In 23
Buitrago, A., Julian, A., Ospina Patiño, B., Gil Llanos, J. L. and Aparicio, H., 2007. Cassava root and leaf meals as the main ingredients in poultry feeding: Some experiences in Columbia. Available from  http://ciat-library.ciat.cgiar.org/Articulos_Ciat/proceedings_workshop_02/523.pdf . Accessed 2020-09-11
Cardoso, A. P., Mirione, E., Ernesto, M., Massaza, F., Cliff, J., Haque, M. R. and Bradbury, J. H., 2005. Processing of cassava roots to remove cyanogens. Journal of Food Composition and Analysis, 18(5), 451-60.
doi: 10.1016/j.jfca.2004.04.002
Chang’a, E. P., Abdallh, M. E., Ahiwe, E. U., Mbaga, S., Zhu, Z. Y., Fru-Nji, F. and de Iji, P. A., 2020. Replacement value of cassava for maize in broiler chicken diets supplemented with enzymes. Asian-Australasian Journal of Animal Sciences, 33(7), 1126. https://doi.org/10.5713/ajas.19.0263
Charles, A. L., Sriroth, K. and Huang, T. C., 2005. Proximate composition, mineral contents, hydrogen cyanide and phytic acid of 5 cassava genotypes. Food Chemistry, 92(4), 615-20. https://doi.org/10.1016/j.foodchem.2004.08.024
doi: 10.1016/j.foodchem.2004.08.024
Chauynarong, N., Bhuiyan, M. M., Kanto, U. and Iji, P. A., 2015. Variation in nutrient composition of cassava pulp and its effects on in vitro digestibility. Asian Journal of Poultry Science, 9(4), 203–212. Available from https://scialert.net/abstract/?doi=ajpsaj.2015.203.212 . Accessed 2020-10-03
Chauynarong, N., Elangovan, A. V. and Iji, P. A., 2009. The potential of cassava products in diets for poultry. World’s Poultry Science Journal, 65(1), 23-36. https://doi.org/10.1017/S0043933909000026
doi: 10.1017/S0043933909000026
Chisenga, S. M., Workneh, T. S., Bultosa, G. and Alimi, B. A., 2019. Progress in research and applications of cassava flour and starch: a review. Journal of Food Science and Technology, 56(6), 2799-2813. https://doi.org/10.1007/s13197-019-03814-6
doi: 10.1007/s13197-019-03814-6 pubmed: 31205336 pmcid: 6542882
Chisenga, S. M., Workneh, T. S., Bultosa, G. and Laing, M., 2019. Characterization of physicochemical properties of starches from improved cassava varieties grown in Zambia. AIMS Agriculture and Food, 4(4), 939–966. Available from  https://www.aimspress.com/fileOther/PDF/agriculture/agrfood-04-04-939.pdf . Accessed 2020-08-29
Dersjant‐Li, Y., Awati, A., Schulze, H. and Partridge, G., 2015. Phytase in non‐ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. Journal of the Science of Food and Agriculture, 95(5), 878-96. https://doi.org/10.1002/jsfa.6998
doi: 10.1002/jsfa.6998 pubmed: 25382707
Diarra, S.S. and Devi, A., 2015. Feeding value of some cassava by-products meal for poultry: A review. Pakistan Journal of Nutrition, 14(10), 735-741.
doi: 10.3923/pjn.2015.735.741
Emmanuel, O., Clement, A., Agnes, S., Chiwona-Karltun, L., and Drinah B., 2012. Chemical composition and cyanogenic potential of traditional and high yielding CMD resistant cassava (Manihot esculenta Crantz) varieties. The International Food Research Journal, 19(1), 175–181.
Erdaw, M. M., 2016. Maximizing the nutritional value of unprocessed soybean meal through supplementation with complex microbial enzyme products. PHD thesis, University of New England, Australia. Available from https://rune.une.edu.au/web/bitstream/1959.11/23291/5/open/SOURCE03.pdf . Accessed 2020-10-18
Erdaw, M. M., Bhuiyan, M. M. and Iji, P. A., 2016. Enhancing the nutritional value of soybeans for poultry through supplementation with new-generation feed enzymes. World’s Poultry Science Journal, 72(2), 307-22. https://doi.org/10.1017/S0043933916000271
doi: 10.1017/S0043933916000271
Eriksson, E., Koch, K., Tortoe, C., Akonor, P. T. and Oduro-Yeboah, C., 2014. Evaluation of the physical and sensory characteristics of bread produced from three varieties of cassava and wheat composite flours. Food Public Health 4, 214 - 222. Available from http://article.sapub.org/10.5923.j.fph.20140405.02.html . Accessed 2020-09-24
Eruvbetine, D., 1995. Processing and utilizsation utilisation of cassava as animal feed for non-ruminant animals. Ina workshop organised organised by Ministry of Agriculture, Co-opaerative and Rural Development, Lagos
Eruvbetine, D., Tajudeen, I. D., Adeosun, A. T. and Olojede, A. A., 2003. Cassava (Manihot esculenta) leaf and tuber concentrate in diets for broiler chickens. Bioresource Technology, 86(3), 277-81. https://doi.org/10.1016/S0960-8524(02)00136-0
doi: 10.1016/S0960-8524(02)00136-0 pubmed: 12688471
Ezeala, D. O. and Okoro, N., 1986. Processing techniques and hydrocyanic acid content of cassava‐based human foodstuffs in Nigeria. Journal of Food Biochemistry, 10(2), 125-32. https://doi.org/10.1111/j.1745-4514.1986.tb00095.x
doi: 10.1111/j.1745-4514.1986.tb00095.x
Fakir, M. S., Jannat, M., Mostafa, M. G. and Seal, H., 2012. Starch and flour extraction and nutrient composition of tuber in seven cassava accessions. Journal of the Bangladesh Agricultural University, 10(2), 217–22. Available from  https://www.banglajol.info/index.php/JBAU/article/view/14698 . Accessed 2020-08-29
FAOSTAT.,2019. Food and Agriculture Statistics Data.  http://www.fao.org/faostat/en/#data . Accessed 2020-08-19
Fru-Nji, F., Kluenter, A. M., Fischer, M. and Pontoppidan, K., 2011. A feed serine protease improves broiler performance and increases protein and energy digestibility. The Journal of Poultry Science, 48(4), 239-246. https://doi.org/10.2141/jpsa.011035
doi: 10.2141/jpsa.011035
Gracia, M. I., Aranibar, M., Lazaro, R., Medel, P. and Mateos, G. G., 2003. Alpha-amylase supplementation of broiler diets based on corn. Poultry Science, 82(3), 436-42.
doi: 10.1093/ps/82.3.436
Guerre, P., 2016. Worldwide mycotoxins exposure in pig and poultry feed formulations. Toxins, 8(12): 350. https://doi.org/10.3390/toxins8120350
doi: 10.3390/toxins8120350 pmcid: 5198545
Gurung, N., Ray, S., Bose, S. and Rai, V., 2013. A broader view : Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Research International, 2013, 329121. https://doi.org/10.1155/2013/329121
doi: 10.1155/2013/329121 pubmed: 24106701 pmcid: 3784079
Haritha, M. C. and Ayona, J., 2017. Determination of tannin, phytate and total oxalate content in selected varieties of cassava (Manihot esculenta Crantz) tubers. International Journal for Research in Applied Sciences and Engineering Technology, 5(11), 141-5. https://doi.org/10.22214/ijraset.2017.11022
doi: 10.22214/ijraset.2017.11022
Herrera, M., Solis, T., Godoy, V. and Benítez, M., 2019. Meal of cassava (Manihot esculenta crantz) leaves in diets for naked neck broilers (Gen Nana). Cuban Journal of Agricultural Science, 53(1). Available from  https://cjascience.com/index.php/CJAS/article/view/860 . Accessed 2020-09-15
Idowu, O. M., Bamgbose, A. M., Jegede, A. U., Idowu, A. O., Sule, R. and Eruvbetine, D., 2005. Effects of replacement of cassava peel with cassava root sievate on performance and egg quality characteristics of laying hen. In J Ann Conf Anim Sci (pp. 136–139)
Iheukwumere, F. C., Ndubuisi, E. C., Mazi, E. A. and Onyekwere, M. U., 2008. Performance, nutrient utilization and organ characteristics of broilers fed cassava leaf meal (Manihot esculenta Crantz). Pakistan Journal of Nutrition, 7(1), 13–6. Available from http://docsdrive.com/pdfs/ansinet/pjn/2008/13-16.pdf . Accessed 2020-09-15
Joel, N. and Nwaubani Oluchi, A.I., 2019. Effect of palm oil inclusion on the quality of garri produced from white and yellow cassava (Manihot esculenta cranz) roots. Annals Food Science and Technology, 20(3), 443-450. Available from http://www.afst.valahia.ro/images/documente/2019/issue3/I.5_Joel.pdf . Accessed 2020-9-15
Jovanovich, G. and Añón, M. C., 1999. Amylose-lipid complex, physicochemical properties and the effects of different variables. LWT - Food Science and Technology, 32(2), 95-101. https://doi.org/10.1006/fstl.1998.0499
doi: 10.1006/fstl.1998.0499
Kamel, NF., Ragaa, M., El-Banna, R. A. and Mohamed, F.F., 2015. Effects of a monocomponent protease on performance parameters and protein digestibility in broiler chickens. Agriculture and Agricultural Science Procedia, 6, 216-225. https://doi.org/10.1016/j.aaspro.2015.08.062
doi: 10.1016/j.aaspro.2015.08.062
Kaminiska, B.Z., 1979. Food intake in the young chick. In: Boorman, K.N., Freeman, B.M. (Eds.), Food Intake Regulation in Poultry. British Poultry Science Ltd., Edinburg, Scotland, pp. 199–206
Karboune, S., L’hocine, L., Anthoni, J., Geraert, P. A. and Kermasha, S., 2009. Properties of selected hemicellulases of a multi-enzymatic system from Penicillium funiculosum. Bioscience, Biotechnology and Biochemistry, 73(6), 1286-92. https://doi.org/10.1271/bbb.80808
doi: 10.1271/bbb.80808
Khajarern, S. and Khajarern, J., 2007. Use of cassava products in poultry feeding: Roots, tubers, plantains and bananas in animal feeding. Available from http://www.fao.org/3/T0554E/T0554E10.htm . Accessed 2020-08-29
Kheravii, S. K., Morgan, N. K., Swick, R. A., Choct, M. and Wu, S. B., 2018. Roles of dietary fibre and ingredient particle size in broiler nutrition. World’s Poultry Science Journal, 74(2), 301-316. https://doi.org/10.1017/S0043933918000259
doi: 10.1017/S0043933918000259
Khieu, B., Chhay, T., Ogle, R. B. and Preston, T. R., 2005. Research on the use of cassava leaves for livestock feeding in Cambodia. In: Proceeding of the regional workshop on “The use of cassava roots and leaves for On-Farm Animal Feeding”, Hue, Vietnam, 17–9
Khor, H. T. and Tan, H. L., 1981. The lipids of young cassava (Manihot esculenta, Crantz) leaves. Journal of the Science of Foof and Agriculture, 32(4), 399-402. https://doi.org/10.1002/jsfa.2740320414
doi: 10.1002/jsfa.2740320414
Koehler, P. and Wieser, H., 2013. Chemistry of Cereal Grains. In: Gobbetti M., Gänzle M. (eds) Handbook on Sourdough Biotechnology. Springer, Boston, MA. Available from  https://doi.org/10.1007/978-1-4614-5425-0_2
Kyawt, Y. Y., Toyama, H., Htwe, W. M., Thaikua, S., Imura, Y. and Kawamoto, Y., 2014. Effects of cassava substitute for maize based diets on performance characteristics and egg quality of laying hens. International Journal of Poultry Science, 13(9), 518. Available from  https://scialert.net/abstract/?doi=ijps.2014.518.524 . Accessed 2020-10-21
Law, F. L., Zulkifli, I., Soleimani, A. F., Liang, J. B. and Awad, E. A., 2018. The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment. Asian-australasian Journal of Animal Sciences, 31(8), 1291. https://doi.org/10.5713/ajas.17.0581
Leeson, S., Namkung, H., Cottrill, M. and Forsberg, C. W., 2000. Efficacy of new bacterial phytase in poultry diets. Canadian Journal of Animal Science, 80 (3), 527-8. https://doi.org/10.4141/A99-123
doi: 10.4141/A99-123
Lei, X. G., Weaver, J. D., Mullaney, E., Ullah, A. H. and Azain, M. J., 2013. Phytase, a new life for an “old” enzyme. Annual Review of Animal Biosciences, 1(1), 283 - 309. https://doi.org/10.1146/annurev-animal-031412-103717
doi: 10.1146/annurev-animal-031412-103717 pubmed: 25387021
Lei, X. J., Park, J. H., Hosseindoust, A. and Kim, I. H., 2017. Effects of cassava (Manihot esculenta crantz) root meal in diets containing corn dried distillers grains with solubles on production performance, egg quality, and excreta noxious gas emission in laying hens. Brazilian Journal of Poultry Science, 19(2), 239-46. https://doi.org/10.1590/1806-9061-2016-0386
doi: 10.1590/1806-9061-2016-0386
Liener, I. E., 1994. Implications of anti-nutritional components in soybean foods. Critical Reviews in Food Science & Nutrition, 34(1), 31-67. https://doi.org/10.1080/10408399409527649
doi: 10.1080/10408399409527649
Liu, H., Zhang, J., Wang, S., Wu, S. and Anna-Maria, K., 2018. Effect of exogenous carbohydrase enzymes on energy utilisation utilisation of cassava chip-based diet in broiler chickens. 11th Asian Pacific Poultry Conference, Bangkok, Thailand
Lukuyu, B., Okike, I., Duncan, A.J., Beveridge, M. and Blummel, M., 2014. Use of cassava in livestock and aquaculture feeding programs (Vol. 25). ILRI (aka ILCA and ILRAD)
Maenz, D. D. and Classen, H. L., 1998. Phytase activity in the small intestinal brush border membrane of the chicken. Poultry Science, 77(4), 557 - 563. https://doi.org/10.1093/ps/77.4.557
doi: 10.1093/ps/77.4.557 pubmed: 9565239
Malekian, G., Zamani Moghaddam, A. K. and Khajali, F., 2013. Effect of using enzyme complex on productivity and hatchability of broiler breeders fed a corn-soybean meal diet. Poultry Science Journal, 1(1), 43–52.  http://psj.gau.ac.ir/article_1471_110a85c89f8eec77cc4d4d8cb09efca0.pdf . Accessed 2020-10-29
Manano, J., Ogwok, P. and Byarugaba-Bazirake, G. W., 2017. Chemical composition ofmajor cassava varieties in Uganda, targeted for industrialisation. Journal of Food Research, 7(1), 1-9. https://doi.org/10.5539/jfr.v7n1p1
doi: 10.5539/jfr.v7n1p1
Meng, X. and Slominski, B. A., 2005. Nutritive values of corn, soybean-meal, canola-meal, and peas for broiler chickens as affected by a multicarbohydrase preparation of cell wall degrading enzymes. Poultry Science, 84(8), 1242-1251. https://doi.org/10.1093/ps/84.8.1242
doi: 10.1093/ps/84.8.1242 pubmed: 16156208
Midau, A., Augustine, C., Yakubu, B., Yahaya, S. M., Kibon, A. and Udoyong, A. O., 2011. Performance of broiler chicken fed enzyme supplemented cassava peel meal-based diets. International Journal of Sustainable Agriculture, 3, 1–4. Available from https://idosi.org/ijsa/3(1)11/1.pdf . Accessed 2020-09-18
Mogridge, J. L., Smith, T. K. and Sousadias, M. G., 1996. Effect of feeding raw soybeans on polyamine metabolism in chicks and the therapeutic effect of exogenous putrescine. Journal of Animal Science, 74(8), 1897-904. https://doi.org/10.2527/1996.7481897x
doi: 10.2527/1996.7481897x pubmed: 8856444
Morgan, N. K. and Choct, M., 2016. Cassava: Nutrient composition and nutritive value in poultry diets. Animal Nutrition, 2(4), 253-261.
doi: 10.1016/j.aninu.2016.08.010
Morgan, N., Choct, M., Toghyani, M. and Wu, S., 2018. Effects of dietary insoluble and soluble non-starch polysaccharides on performance and ileal and excreta moisture. In 29th Annual Australian Poultry Science Symposium (P. 34). Available from https://az659834.vo.msecnd.net/eventsairaueprod/production-usyd-public/3a3d3afe331b444c9f65e7cd9a5fa20b . Accessed 2020-09-18
Mtunguja, M. K., Thitisaksakul, M., Muzanila, Y. C., Wansuksri, R. and Piyachomkwan K., 2016. Assessing variation in physico-chemical, structural, and functional properties of root starches from novel Tanzanian cassava (Manihot esculenta Crantz.) landraces. Starch‐Stärke, 68(5–6), 514–527. https://doi.org/10.1002/star.201500179
Nassar, N. M. and Sousa, M. V., 2007. Amino acid profile in cassava and its interspecific hybrid. Genetics and Molecular Research, 6(2), 192–197. Available from  https://geneticsmr.com/articles/354 . Accessed 2020-09-18
Ndazigaruye, G., Kim, D. H., Kang, C. W., Kang, K. R., Joo, Y. J., Lee, S. R., Lee, K. W., 2019. Effects of low-protein diets and exogenous protease on growth performance, carcass traits, intestinal morphology, cecal volatile fatty acids and serum parameters in broilers. Animals, 9(5), 226. https://doi.org/10.3390/ani9050226
Ngiki, Y. U., Igwebuike, J. U. and Moruppa, S. M., 2014. Utilizsation Utilisation of cassava products for poultry feeding: A review. The International Journal of Science and Technoledge, 2(6), 48. Available from  http://www.internationaljournalcorner.com/index.php/theijst/article/view/128153 . Accessed 2020-09-18
Nguyen, Q. H., Le, P. D., Chim, C., Le, N. D. and Fievez, V., 2019. Potential to mitigate ammonia emission from slurry by increasing dietary fermentable fiber through inclusion of tropical by-products in practical diets for growing pigs. Asian-Australasian Journal of Animimal Science, 32(4), 574-584. https://doi.org/10.5713/ajas.18.0481
doi: 10.5713/ajas.18.0481
O’Neill, H. M., Smith, J. A. and Bedford, M. R., 2014. Multicarbohydrase enzymes for non-ruminants. Asian-australasian Journal of Animal Sciences, 27(2), 290. https://doi.org/10.5713/ajas.2013.13261
Odetallah, N. H., Wang, J. J., Garlich, J. D. and Shih, J. C., 2005. Versazyme supplementation of broiler diets improves market growth performance. Poultry Science, 84(6), 858-64
doi: 10.1093/ps/84.6.858
Ogunwole, O. A., Lawal, H. O., Idowu, A. I., Oladimeji, S. O., Abayomi, F. D. and Tewe, O. O., 2016. Carcass characteristics, proximate composition and residual retinol in meat of broiler chickens fed β-carotene cassava (manihotesculentacrantz) grits based diets. Journal of Animal Production Research, 28(2), 102-17.
Oladunmoye, O. O., Aworh, O. C., Maziya‐Dixon, B., Erukainure, O. L. and Elemo, G. N., 2014. Chemical and functional properties of cassava starch, durum wheat semolina flour and their blends. Food Science & Nutrition, 2(2), 132-138. https://doi.org/10.1002/fsn3.83
doi: 10.1002/fsn3.83
Oluwaniyi, O.O. and Oladipo, J.O., 2017. Comparative studies on the phytochemicals, nutrients and antinutrients content of cassava varieties. Journal of the Turkish Chemical Society Section A: Chemistry, 4(3), 661–674.
doi: 10.18596/jotcsa.306496
Omede, A. A., Ahiwe, E. U., Zhu, Z. Y., Fru-Nji, F. and Iji, P. A., 2017. Improving cassava quality for poultry feeding through application of biotechnology. In Cassava. IntechOpen. Available from  https://www.intechopen.com/books/cassava/improving-cassava-quality-for-poultry-feeding-through-application-of-biotechnology . Accessed 2020-10-13
Ogundu, E.C., Ekpo, S.J., Ukpanah, A.U., Essien, A.C. and FramkIboro, O., 2017. Performance and Carcass Quality of Broiler Placed on Pro-Vitamin A Cassava and Sweet Cassava-Based Diets. Asian Journal of Agriculture and Food Sciences, 5(4)
Onitilo, M. O., Sanni, L. O., Oyewole, O. B. and Maziya-Dixon, B., 2007. Physico-chemical and functional properties of sour starches from different cassava varieties. International Journal of Food Properties, 10(3), 607-620. https://doi.org/10.1080/10942910601048994
doi: 10.1080/10942910601048994
Onyimonyi, A. E. and Ugwu, S. O., 2007. Bioeconomic indices of broiler chicks fed varying ratios of cassava peel/bovine blood. International Journal of Poultry Science, 6(5), 318–21. Available from  https://scialert.net/abstract/?doi=ijps.2007.318.321 . Accessed 2020-10-02
Oyebimpe, K., Fanimo, A. O., Oduguwa, O. O. and Biobaku, W. O., 2006. Response of broiler chickens to cassava peel and maize offal in cashewnut meal-based diets. Archivos de zootecnia, 55(211), 301–4. Available from  https://www.redalyc.org/pdf/495/49521111.pdf . Accessed 2020-10-02
Phiny, C., Ogle, B., Preston, T. R. and Borin, K., 2008. Digestibility and N-retention in crossbred pigs of diets with water spinach or water spinach mixed with mulberry leaves as protein sources in basal diets of cassava root meal plus rice bran, or sugar palm syrup plus broken rice. Livestock Research for Rural Development, 20. Available from  http://www.lrrd.org/lrrd20/supplement/phin1.htm . Accessed 2020-10-03
Planas, A., 2000. Bacterial 1, 3–1, 4-β-glucanases: structure, function and protein engineering. Biochimica et Biophysica Acta (BBA)- Protein Structure and Molecular Enzymology, 1543(2), 361–82. https://doi.org/10.1016/S0167-4838(00)00231-4
Promthong, S., Kanto, U., Tirawattanawanich, C., Tongyai, S., Isariyodom, S., Markvichitr, K. and Engkagul, A., 2005. Comparison of nutrient compositions and carbohydrate fractions of corn, cassava chip and cassava pellet ingredients. In Proceedings of 43rd Kasetsart University Annual Conference, Thailand, 1–4 February, 2005. Subject: Animals 2005 (pp. 146–151). Kasetsart University
Puspita, P. S. and Hermana, W., 2019. Effect of isoamylase application on chemical characteristic of cassava root meal starch. In IOP Conference Series: Earth and Environmental Science 2019 Mar 1 (Vol. 251, No. 1, p. 012058). IOP Publishing
Rada, V., Lichovníková, M., Foltyn, M. and Šafařík, I., 2016. The effect of exogenous protease in broiler diets on the apparent ileal digestibility of amino acids and on protease activity in jejunum. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 64(5), 1645–1652. Available from  https://acta.mendelu.cz/pdfs/acu/2016/05/26.pdf . Accessed 2020-10-18
Rakangtong, C. and Bunchasak, C., 2011. Effects of total sulfur amino acids in corn–cassava–soybean diets on growth performance, carcass yield and blood chemical profile of male broiler chickens from 1 to 42 days of age. Animal Production Science, 51(3), 198-203. https://doi.org/10.1071/AN10217
doi: 10.1071/AN10217
Raphaël, K. J., Kouabena, K., Hervé, M. K., Alexis, T. and Yacouba, M., 2013. Effect of substituting maize with cassava root meal on laying performances of local barred-chicken under improved management conditions in Cameroon. Livestock Research for Rural Development, 25, 177. Available from  http://www.lrrd.org/lrrd25/10/kana25177.htm . Accessed 2020-10-03
Ravindran, V. and Ravindran, G., 1988. Nutritional and anti‐nutritional characteristics of mucuna (Mucuna utilis) bean seeds. Journal of the Science of Food and Agriculture, 46(1), 71-9. https://doi.org/10.1002/jsfa.2740460108
doi: 10.1002/jsfa.2740460108
Ravindran, V., 2017. Cassava leaf meal. Non-traditional Feed Sources for Use in Swine Production (Thacker PA and Kirkwood RN eds.), pp 91 - 101.
Ravindran, V., 2017. Utilizsation Utilisation of cassava (Manihot esculenta crantz) leaves in animal nutrition. Journal of the National Science Foundation of Sri Lanka, 21(1), 1 - 26. http://doi.org/ https://doi.org/10.4038/jnsfsr.v21i1.8085
doi: 10.4038/jnsfsr.v21i1.8085
Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A. and Ashraf, M., Microbial proteases applications. Frontiers in Bioengineering and Biotechnology, 7, 110.  https://doi.org/10.3389/fbioe.2019.00110
Régnier, C., Bocage, B., Archimède, H. and Renaudeau, D., 2010. Effects of processing methods on the digestibility and palatability of cassava root in growing pigs. Animal Feed Science Technology, 162(3-4), 135-143.
doi: 10.1016/j.anifeedsci.2010.09.010
Rodriguez-Sanchez, R., Tres, A., Sala, R., Guardiola, F. and Barroeta, A. C., 2019. Evolution of lipid classes and fatty acid digestibility along the gastrointestinal tract of broiler chickens fed different fat sources at different ages. Poultry Science, 98(3), 1341-1353.
doi: 10.3382/ps/pey458
Salami, R. I. and Odunsi, A. A., 2003. Evaluation of processed cassava peel meals as substitutes for maize in the diets of layers. International Journal of Poultry Science, 2(2), 112–6. Available from  https://scialert.net/abstract/?doi=ijps.2003.112.116 . Accessed 2020-10-03
Sarkiyayi, S. and Agar, T. M., 2010. Comparative analysis on the nutritional and anti-nutritional contents of the sweet and bitter cassava varieties. Advance Journal of Food Science and Technology, 2(6), 328–334. Available from https://maxwellsci.com/print/ajfst/v2-328-334.pdf
Sebastian, S., Touchburn, S. P., Chavez, E. R. and Lague, P. C., 1996. The effects of supplemental microbial phytase on the performance and utilizsation utilisation of dietary calcium, phosphorus, copper, and zinc in broiler chickens fed corn-soybean diets. Poultry Science, 75(6), 729-36. https://doi.org/10.3382/ps.0750729
doi: 10.3382/ps.0750729 pubmed: 8737837
Seuss-Baum, I. and Nau, F., 2011. The nutritional quality of eggs. Improving the safety and quality of eggs and egg products (pp. 201–236). Woodhead Publishing
Sharmila, A., Azhar, K., Hezmee, M. N. and Samsudin, A. A., 2014. Effect of xylanase and cellulase supplementation on growth performance, volatile fatty acids and caecal bacteria of broiler chickens fed with palm kernel meal-based diet. Journal of Animal and Poultry Sciences, 3(1), 19–28. Available from  http://www.japsc.com/wp-content/uploads/2014/03/ANJAS-JAPSC-2014-3_1_-19-28.pdf . Accessed 2020-10-20
Simão, A. A., Santos, M. A., Fraguas, R. M., Braga, M. A., Marques, T. R., Duarte, M. H., Dos Santo,s C. M., Freire, J. M. and Corrêa, A. D., 2013. Antioxidants and chlorophyll in cassava leaves at three plant ages. African Journal of Agricultural Research, 8(28), 3724-30. https://doi.org/10.5897/AJAR2013.6746
doi: 10.5897/AJAR2013.6746
Sinha, A. K., Kumar, V., Makkar, H. P., De Boeck, G. and Becker, K., 2011. Non-starch polysaccharides and their role in fish nutrition - A review. Food Chemistry, 127(4), 1409 - 1426. https://doi.org/10.1016/j.foodchem.2011.02.042
doi: 10.1016/j.foodchem.2011.02.042
Sogunle, O. M., Fanimo, A. O., Abiola, S. S. and Bamgbose, A. M., 2009. Performance of growing pullets fed cassava peel meal diet supplemented with cashew nut reject meal. Archivod de Zootecnia, 58(221), 23–31. Available from  http://scielo.isciii.es/pdf/azoo/v58n221/art3.pdf . Accessed 2020-09-18
Srinath, K., Ravinder, R., Kondal, R., Mallikarjuna, P., Chinni, P. and Reddy, M., 2012. Effect of supplementation of corn-soya pelleted diets with encapsulated feed enzymes on performance of broilers. International Journal of Food, Agriculture and Veterinary Science, 2, 115-27.
Staack, L., Della Pia, E. A., Jørgensen, B., Pettersson, D. and Pedersen, N. R., 2019. Cassava cell wall characterizsation characterisation and degradation by a multicomponent NSP-targeting enzyme (NSPase). Scientific Reports, 9(1), 10150. https://doi.org/10.1038/s41598-019-46341-2
doi: 10.1038/s41598-019-46341-2 pubmed: 31300662 pmcid: 6626134
Stefanello, C., Vieira, S. L., Soster, P., Dos Santos, B. M., Dalmoro, Y. K., Favero, A. and Cowieson, A. J., 2019. Utilizsation Utilisation of corn-based diets supplemented with an exogenous α-amylase for broilers. Poultry Science, 98(11), 5862-9. https://doi.org/10.3382/ps/pez290
doi: 10.3382/ps/pez290 pubmed: 31189183
Steenkamp, V. and McCrindle, C.M., 2014. Production, consumption and nutritional value of cassava (Manihot esculenta, Crantz) in Mozambique: An overview. Journal of Agricultural Biotechnology and Sustainable Development, 6(3), 29-38.
doi: 10.5897/JABSD2014.0224
Sun, R., Jones, G. L., Tomkinson, J. and Bolton, J., 1999. Fractional isolation and partial characterizsation characterisation of non-starch polysaccharides and lignin from sago pith. Industrial Crops and Products, 9(3), 211-220. https://doi.org/10.1016/S0926-6690(98)00032-6
doi: 10.1016/S0926-6690(98)00032-6
Tamim, N. M. and Angel, R., 2003. Phytate phosphorus hydrolysis as influenced by dietary calcium and micro-mineral source in broiler diets. Journal of Agricultural and Food Chemistry, 51(16), 4687-93. https://doi.org/10.1021/jf034122x
doi: 10.1021/jf034122x pubmed: 14705897
Tamim, N. M., Angel, R. and Christman, M., 2004. Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poultry Science, 83(8), 1358-67. https://doi.org/10.1093/ps/83.8.1358
doi: 10.1093/ps/83.8.1358 pubmed: 15339011
Taniguchi, H., Honnda, Y., 2009. Amylases. In: Encyclopedia of Microbiology, Schaechter, M. (Ed.). [Book]. Academic Press, New York, USA
Tewe, O.O. and Egbunike G.N. 1992. Utilization of cassava in non-ruminant livestock feeds. In: Hahn S.K., Reynolds L., Egbunike G.N., editors. Cassava as livestock feed in Africa. Proceedings of IITA/ILCA/University of Ibadan workshop on the potential utilisation of cassava as livestock feed in Africa. pp. 28–38.
Ty, C. and Preston, T. R., 2006. Effect of different ratios of water spinach and fresh cassava leaves on growth of pigs fed basal diets of broken rice or mixture of rice bran and cassava root meal. Livestock Research for Rural Development, 18(4). Available from  http://www.lrrd.org/lrrd18/4/chha18057.htm . 2020-10-03
Ugwuanyi, J. O., 2016. Enzymes for nutritional enrichment of agro-residues as livestock feed. In: Agro-Industrial wastes as feedstock for enzyme production. (pp. 233–260). Academic Press. 
Ukachukwu, S. N., 2008. Effect of composite cassava meal with or without palm oil and/or methionine supplementation on broiler performance. Livestock Research for Rural Development, 20(4), 53. Available from  http://www.lrrd.org/lrrd20/4/ukac20053.htm. Accessed 2020-10-03
United States Department of Agriculture, 2019. Agricultural Research Service. FoodData Central. fdc.nal.usda.gov . Accessed 2020-08-20
Uthumporn, U., Nadiah, I., Izzuddin, I., Cheng, L. and Aida, H., 2017. Physicochemical characteristics of non-starch polysaccharides extracted from cassava tubers. Sains Malaysia, 46(2), 223–229.  https://doi.org/10.17576/jsm-2017-4602-06
Waldroup, P. W. and Smith, K., 2008. Fact sheet - soybean use – poultry. Soybean meal information center. Available from http://www.soymeal.org/FactSheets/ . Accessed 2020-10-20
Walugembe, M., Rothschild, M. F. and Persia, M. E., 2014. Effects of high fiber ingredients on the performance, metabolisable energy and fiber digestibility of broiler and layer chicks. Animal Feed Science and Technology, 188, 46 - 52.
doi: 10.1016/j.anifeedsci.2013.09.012
Whittemore, C.T. and Kyriazakis, I., 2008. Whittemore's science and practice of pig production. John Wiley & Sons.
Wiseman, J., 2006. Variations in starch digestibility in non-ruminants. Animal Feed Science and Technology, 130(1-2), 66-77. https://doi.org/10.1016/j.anifeedsci.2006.01.018
doi: 10.1016/j.anifeedsci.2006.01.018
Woyengo, T. A., Bogota, K. J., Noll, S. L. and Wilson, J., 2019. Enhancing nutrient utilizsation utilisation of broiler chickens through supplemental enzymes. Poultry Science, 98(3), 1302 - 1309.
doi: 10.3382/ps/pey452
Zou, J., Zheng, P., Zhang, K., Ding, X. and Bai, S., 2013. Effects of exogenous enzymes and dietary energy on performance and digestive physiology of broilers. Journal of Animal Science and Biotechnology, 4(1), 1-9. https://doi.org/10.1186/2049-1891-4-14
doi: 10.1186/2049-1891-4-14
Zulkarnain, D., Zuprizal, Z., Wihandoyo, W. and Supadmo, S., 2016. Effect of cellulase supplementation on in vitro digestibility and energy, crude fiber and cellulose content of sago palm (Metroxylon sp.) waste as broiler chicken feed. Pakistan Journal of Nutrition, 15, 997-1002. https://doi.org/10.3923/pjn.2016.997.1002
doi: 10.3923/pjn.2016.997.1002

Auteurs

Archibold G Bakare (AG)

College of Agriculture, Fisheries and Forestry, Fiji National University, Suva, Fiji Islands. archibold.bakare@fnu.ac.fj.

Titus J Zindove (TJ)

College of Agriculture, Fisheries and Forestry, Fiji National University, Suva, Fiji Islands.

Paul A Iji (PA)

College of Agriculture, Fisheries and Forestry, Fiji National University, Suva, Fiji Islands.

Kostas Stamatopoulos (K)

DSM Nutritional Products - Animal Nutrition & Health, Mapletree Business City, 30 Pasir Panjang Road, Singapore, #13-31, Singapore.

Aaron J Cowieson (AJ)

DSM Nutritional Products, Wurmisweg, Kaiseraugst, Switzerland.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH