Optimization of Genomic Selection to Improve Disease Resistance in Two Marine Fishes, the European Sea Bass (
Sparus aurata
aquaculture
dicentrarchus labrax
disease resistance
genomic selection
Journal
Frontiers in genetics
ISSN: 1664-8021
Titre abrégé: Front Genet
Pays: Switzerland
ID NLM: 101560621
Informations de publication
Date de publication:
2021
2021
Historique:
received:
09
02
2021
accepted:
25
06
2021
entrez:
2
8
2021
pubmed:
3
8
2021
medline:
3
8
2021
Statut:
epublish
Résumé
Disease outbreaks are a major threat to the aquaculture industry, and can be controlled by selective breeding. With the development of high-throughput genotyping technologies, genomic selection may become accessible even in minor species. Training population size and marker density are among the main drivers of the prediction accuracy, which both have a high impact on the cost of genomic selection. In this study, we assessed the impact of training population size as well as marker density on the prediction accuracy of disease resistance traits in European sea bass (
Identifiants
pubmed: 34335683
doi: 10.3389/fgene.2021.665920
pmc: PMC8317601
doi:
Types de publication
Journal Article
Langues
eng
Pagination
665920Commentaires et corrections
Type : ErratumIn
Informations de copyright
Copyright © 2021 Griot, Allal, Phocas, Brard-Fudulea, Morvezen, Haffray, François, Morin, Bestin, Bruant, Cariou, Peyrou, Brunier and Vandeputte.
Déclaration de conflit d'intérêts
RG, SB-F, RM, AB, YF, and PH are employed by SYSAAF, that provides expertise to the management of aquaculture breeding programs in France. SC, JB, J-SB, and BP are employed by companies that run fish breeding programs. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Genetics. 2012 Oct;192(2):715-28
pubmed: 22865733
G3 (Bethesda). 2016 Nov 8;6(11):3693-3700
pubmed: 27652890
BMC Genomics. 2020 Aug 14;21(1):558
pubmed: 32795250
BMC Genomics. 2013 Dec 13;14:876
pubmed: 24330634
Front Vet Sci. 2020 Nov 05;7:590048
pubmed: 33251271
J Anim Breed Genet. 2018 Jun 5;:
pubmed: 29869355
J Gen Virol. 2004 Oct;85(Pt 10):3079-3087
pubmed: 15448371
Genetics. 2001 Apr;157(4):1819-29
pubmed: 11290733
J Anim Sci. 2013 Aug;91(8):3583-92
pubmed: 23736050
J Dairy Sci. 2008 Nov;91(11):4414-23
pubmed: 18946147
Genetica. 2009 Jun;136(2):245-57
pubmed: 18704696
Genetics. 1950 Mar;35(2):212-36
pubmed: 17247344
J Anim Sci. 2011 Mar;89(3):630-8
pubmed: 21036937
J Anim Sci. 1992 Jul;70(7):2000-12
pubmed: 1644672
Genetics. 2010 Jul;185(3):1021-31
pubmed: 20407128
G3 (Bethesda). 2017 Apr 3;7(4):1377-1383
pubmed: 28250015
Front Genet. 2014 Dec 12;5:432
pubmed: 25566319
Front Genet. 2020 Feb 27;11:124
pubmed: 32174974
Genet Sel Evol. 2017 Feb 1;49(1):17
pubmed: 28148220
Anim Genet. 2019 Jun;50(3):293-297
pubmed: 30883847
Front Genet. 2019 Jan 23;9:693
pubmed: 30728827
J Dairy Sci. 2012 Jan;95(1):389-400
pubmed: 22192218
Genet Sel Evol. 2015 May 06;47:38
pubmed: 25943105
Genet Sel Evol. 2013 Oct 15;45:39
pubmed: 24127852
Genetics. 2007 Dec;177(4):2389-97
pubmed: 18073436
Genet Sel Evol. 2017 Feb 15;49(1):23
pubmed: 28201985
Theor Appl Genet. 2013 Nov;126(11):2835-48
pubmed: 23982591
Annu Rev Anim Biosci. 2013 Jan;1:221-37
pubmed: 25387018
BMC Genomics. 2014 Jun 17;15:478
pubmed: 24935670
Genet Sel Evol. 2016 Jun 29;48(1):47
pubmed: 27357694
Mol Ecol Resour. 2020 Mar;20(2):579-590
pubmed: 31609085
Genet Sel Evol. 2018 Jun 8;50(1):30
pubmed: 29884113
BMC Genet. 2018 Jul 11;19(1):43
pubmed: 29996763
Front Genet. 2019 May 22;10:498
pubmed: 31191613
G3 (Bethesda). 2020 Feb 6;10(2):581-590
pubmed: 31826882