In vitro study to evaluate the antimicrobial activity of various multifunctional cosmetic ingredients and chlorphenesin on bacterial species at risk in the cosmetic industry.
antibiotic
bacteria
chlorphenesin
cosmetic
multifunctional ingredients
preservatives
Journal
Journal of applied microbiology
ISSN: 1365-2672
Titre abrégé: J Appl Microbiol
Pays: England
ID NLM: 9706280
Informations de publication
Date de publication:
Feb 2022
Feb 2022
Historique:
revised:
18
07
2021
received:
19
05
2021
accepted:
30
07
2021
pubmed:
2
8
2021
medline:
22
1
2022
entrez:
1
8
2021
Statut:
ppublish
Résumé
We evaluated the activity of the preservative chlorphenesin and of four antimicrobial cosmetic multifunctional ingredients against various strains of gram-negative and gram-positive human opportunistic pathogens. Growth kinetics, modelling growth parameters and statistical analyses enabled comparing bacterial behaviour in the presence and in the absence of the compound. Whatever compound tested (i.e. chlorphenesin, phenylpropanol, hexanediol, ethylhexylglycerin, hydroxyacetophenone) and strain origin (i.e. clinical versus industrial), the growth of 42 strains belonging to Acinetobacter spp., Burkholderia cepacia complex and Stenotrophomonas maltophilia, was totally inhibited. On the opposite all of the P. aeruginosa strains (n = 13) as well as 4 and 6 out of 10 strains of Pluralibacter gergoviae grew in the presence of chlorphenesin and ethylhexylglycerin, respectively. Some P. gergoviae and Staphylococcus hominis strains withstand hydroxyacetophenone. Within a species, the different strains show variable latency phase, growth rate (r) and carrying capacity (K). They can be similar, lower or higher than those measured in control conditions. Data showed differences in the antimicrobial activity of compounds. Upon exposure, strains differed in their behaviour between and within species. Whatever species and strains, compound sensitivity could not be related to antibiotic resistance. Most multifunctional ingredients showed significant antimicrobial properties against the wide panel of species and strains evaluated. This will help adjusting preservation strategies in the cosmetic industry.
Substances chimiques
Anti-Bacterial Agents
0
Preservatives, Pharmaceutical
0
Chlorphenesin
I670DAL4SZ
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
933-948Subventions
Organisme : CLARINS Society
Informations de copyright
© 2021 The Society for Applied Microbiology.
Références
Adewoyin, M.A. & Okoh, A.I. (2018) The natural environment as a reservoir of pathogenic and non-pathogenic Acinetobacter species. Reviews on Environmental Health, 33, 265-272.
Ahn, Y., Kim, J.M., Kweon, O., Kim, S.-J., Jones, R.C., Woodling K. et al. (2016) Intrinsic resistance of Burkholderia cepacia complex to benzalkonium chloride. mBio, 7(6). Available from: http://doi.org/10.1128/mbio.01716-16
Álvarez-Lerma, F., Maull, E., Terradas, R., Segura, C., Planells, I., Coll, P. et al. (2008) Moisturizing body milk as a reservoir of Burkholderia cepacia: outbreak of nosocomial infection in a multidisciplinary intensive care unit. Critical Care, 12, R10.
Ambrosio, C.M.S., Ikeda, N.Y., Miano, A.C., Saldaña, E., Moreno, A.M., Stashenko, E. et al. (2019) Unraveling the selective antibacterial activity and chemical composition of citrus essential oils. Scientific Reports, 9, 17719.
Association of Southeast Asian Nations Preservative efficacy test for cosmetic product. Document N° ACM MAL 08.
Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300.
Brooke, J.S. (2012) Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clinical Microbiology Reviews, 25, 2-41.
Cunningham-Oakes, E., Weiser, R., Pointon, T. & Mahenthiralingam, E. (2019) Understanding the challenges of non-food industrial product contamination. FEMS Microbiology Letters, 366(23). https://doi.org/10.1093/femsle/fnaa010
Dao, H., Lakhani, P., Police, A., Kallakunta, V., Ajjarapu, S.S., Wu, K.-W. et al. (2018) Microbial stability of pharmaceutical and cosmetic products. AAPS PharmSciTech, 19, 60-78.
Davin-Regli, A., Chollet, R., Bredin, J., Chevalier, J., Lepine, F. & Pagès, J.M. (2006) Enterobacter gergoviae and the prevalence of efflux in parabens resistance. Journal of Antimicrobial Chemotherapy, 57, 757-760.
Deredjian, A., Colinon, C., Brothier, E., Favre-Bonte, S., Cournoyer, B. & Nazaret, S. (2011) Antibiotic and metal resistance among hospital and outdoor strains of Pseudomonas aeruginosa. Research in Microbiology, 162, 689-700.
El-Banna, T., Abd El-Aziz, A., Sonbol, F. & El-Ekhnawy, E. (2019) Adaptation of Pseudomonas aeruginosa clinical isolates to benzalkonium chloride retards its growth and enhances biofilm production. Molecular Biology Reports, 46, 3437-3443.
Epstein, H. (2006) Cosmetics preservation: sense and nonsense. Clinics in Dermatology, 24, 551-552.
European Commission. (2009) Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Official Journal of the European Union, 342, 59-209.
European Pharmacopoeia. (2011) Efficacy of antimicrobial preservation. 7th edition. Strasbourg: Council of Europe, pp. 505-506.
Fransway, A.F., Fransway, P.J., Belsito, D.V., Warshaw, E.M., Sasseville, D., Fowler, J.F. et al. (2019) Parabens. Dermat Contact Atopic Occup Drug, 30, 3-31.
Fridman, O., Goldberg, A., Ronin, I., Shoresh, N. & Balaban, N.Q. (2014) Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature, 513, 418-421.
Garuglieri, E., Cattò, C., Villa, F., Zanchi, R. & Cappitelli, F. (2016) Effects of sublethal concentrations of silver nanoparticles on Escherichia coli and Bacillus subtilis under aerobic and anaerobic conditions. Biointerphases, 11, 04B308.
Gomez Escalada, M., Russell, A.D., Maillard, J.-Y. & Ochs, D. (2005) Triclosan-bacteria interactions: single or multiple target sites? Letters in Applied Microbiology, 41, 476-481.
Green, A.E., Amézquita, A., Le Marc, Y., Bull, M.J., Connor, T.R. & Mahenthiralingam, E. (2018) The consistent differential expression of genetic pathways following exposure of an industrial Pseudomonas aeruginosa strain to preservatives and a laundry detergent formulation. FEMS Microbiology Letters, 365.
Halla, N., Fernandes, I.P., Heleno, S.A., Costa, P., Boucherit-Otmani, Z., Boucherit, K. et al. (2018) Cosmetics preservation: a review on present strategies. Molecules, 23, 1571.
Harding, C.M., Hennon, S.W. & Feldman, M.F. (2018) Uncovering the mechanisms of Acinetobacter baumannii virulence. Nature Reviews Microbiology, 16, 91-102.
Henry, D.A., Campbell, M.E., LiPuma, J.J. & Speert, D.P. (1997) Identification of Burkholderia cepacia isolates from patients with cystic fibrosis and use of a simple new selective medium. Journal of Clinical Microbiology, 35, 614-619.
Herrera, A.G. (2004) Microbiological analysis of cosmetics. In: Spencer, J.F.T.& Ragout de Spencer, A.L. (Eds.), Public health microbiology. Methods in molecular biology. vol. 268. New Jersey: Humana Press, pp 293-296. Available from: https://doi.org/10.1385/1-59259-766-1:293
International Organization for Standardization (ISO). (2019) Cosmetics-Microbiology-Evaluation of the antimicrobial protection of a cosmetic product. (Standard No. 11930). Available from: https://www.iso.org/standard/75058.html
Jawad, A., Hawkey, P.M., Heritage, J. & Snelling, A.M. (1994) Description of Leeds Acinetobacter Medium, a new selective and differential medium for isolation of clinically important Acinetobacter spp., and comparison with Herellea agar and Holton’s agar. Journal of Clinical Microbiology, 32, 2353.
Johnson, W., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., Liebler, D. et al. (2012) Safety assessment of 1,2-glycols as used in cosmetics. International Journal of Toxicology, 31, 147S-168S.
Kerr, K.G., Denton, M., Todd, N., Corps, C.M., Kumari, P. & Hawkey, P.M. (1996) A new selective differential medium for isolation of Stenotrophomonas maltophilia. European Journal of Clinical Microbiology and Infectious Diseases, 15, 607-610.
Kim, J.M., Ahn, Y., LiPuma, J.J., Hussong, D. & Cerniglia, C.E. (2015) Survival and susceptibility of Burkholderia cepacia complex in chlorhexidine gluconate and benzalkonium chloride. Journal of Industrial Microbiology and Biotechnology, 42, 905-913.
Kruskal, W. & Wallis, W. (1952) Use of ranks in one-criterion variance analysis. Journal of American Statistical Association, 47, 583-621.
Langsrud, S., Steinhauer, K., Lüthje, S., Weber, K., Goroncy-Bermes, P. & Holck, A.L. (2016) Ethylhexylglycerin impairs membrane integrity and enhances the lethal effect of phenoxyethanol. PLoS ONE, 11, e0165228.
Lavenir, R., Jocktane, D., Laurent, F., Nazaret, S. & Cournoyer, B. (2007) Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. Journal of Microbiological Methods, 70, 20-29.
Lemini, C., Jaimez, R., Ávila, M.E., Franco, Y., Larrea, F. & Lemus, A.E. (2003) In vivo and in vitro estrogen bioactivities of alkyl parabens. Toxicology and Industrial Health, 19, 69-79.
Leong, L.E.X., Lagana, D., Carter, G.P., Wang, Q., Smith, K., Stinear, T.P. et al. (2018) Burkholderia lata infections from intrinsically contaminated chlorhexidine mouthwash, Australia, 2016. Emerging Infectious Diseases, 24, 2109-2111.
Levy, S.B., Dulichan, A.M. & Helman, M. (2009) Safety of a preservative system containing 1,2-hexanediol and caprylyl glycol. Cutaneous and Ocular Toxicology, 28, 23-24.
Li, B., Qiu, Y., Shi, H. & Yin, H. (2016) The importance of lag time extension in determining bacterial resistance to antibiotics. The Analyst, 141, 3059-3067.
Lundov, M.D., Johansen, J.D., Zachariae, C., & Moesby, L. (2011) Low-level efficacy of cosmetic preservatives. International Journal of Cosmetic Science, 33(2), 190-196. Available from: http://doi.org/10.1111/j.1468-2494.2010.00619.x
Lundov, M.D., Moesby, L., Zachariae, C. & Johansen, J.D. (2009) Contamination versus preservation of cosmetics: a review on legislation, usage, infections, and contact allergy. Contact Dermatitis, 60, 70-78.
Miralles, P., Vrouvaki, I., Chisvert, A. & Salvador, A. (2016) Determination of alternative preservatives in cosmetic products by chromophoric derivatization followed by vortex-assisted liquid-liquid semimicroextraction and liquid chromatography. Talanta, 154, 1-6.
Moser, C.L. & Meyer, B.K. (2011) Comparison of compendial antimicrobial effectiveness tests: a review. AAPS PharmSciTech, 12, 222-226.
Neza, E. & Centini, M. (2016) Microbiologically contaminated and over-preserved cosmetic products according rapex 2008-2014. Cosmetics, 3, 3.
Orús, P., Gomez-Perez, L., Leranoz, S. & Berlanga, M. (2015) Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products. International Microbiology, 18, 51-59.
Patrone, V., Campana, R., Vittoria, E. & Baffone, W. (2010) In vitro synergistic activities of essential oils and surfactants in combination with cosmetic preservatives against Pseudomonas aeruginosa and Staphylococcus aureus. Current Microbiology, 60, 237-241.
Périamé, M., Pagès, J.-M. & Davin-Regli, A. (2014) Enterobacter gergoviae adaptation to preservatives commonly used in cosmetic industry. International Journal of Cosmetic Science, 36, 386-395.
Périamé, M., Philippe, N., Condell, O., Fanning, S., Pagès, J.-M. & Davin-Regli, A. (2015) Phenotypic changes contributing to Enterobacter gergoviae biocide resistance. Letters in Applied Microbiology, 61, 121-129.
Personal Care Products Council (2007) CTFA Microbiology Guidelines.
Pinon, A., Alexandre, V., Cupferman, S., Crozier, A. & Vialette, M. (2007) Growth, survival and inactivation of Pseudomonas aeruginosa and Staphylococcus aureus strains of various origin in the presence of ethanol. International Journal of Cosmetic Science, 29, 111-119.
Pinon, A., Decherf, S., Malet, G., Cupferman, S. & Vialette, M. (2015) Bactericidal activity of ammonia and monoethanolamine on Pseudomonas aeruginosa and Staphylococcus aureus strains of various origins. International Journal of Cosmetic Science, 37, 207-211.
Pinot, C., Deredjian, A., Nazaret, S., Brothier, E., Cournoyer, B., Segonds, C. et al. (2011) Identification of Stenotrophomonas maltophilia strains isolated from environmental and clinical samples: a rapid and efficient procedure. Journal of Applied Microbiology, 111, 1185-1193.
Podnecky, N.L., Rhodes, K.A. & Schweizer, H.P. (2015) Efflux pump-mediated drug resistance in Burkholderia. Frontiers in Microbiology, 6. Available from: http://doi.org/10.3389/fmicb.2015.00305
Richards, R., McBride, R. & Gunn, M. (1972) Preliminary investigation of the preservative properties of 3-phenylpropanol. Journal of Pharmacy and Pharmacology, 24(Suppl), 158P-159.
Rose, H., Baldwin, A., Dowson, C.G. & Mahenthiralingam, E. (2009) Biocide susceptibility of the Burkholderia cepacia complex. Journal of Antimicrobial Chemotherapy, 63, 502-510.
Rushton, L., Sass, A., Baldwin, A., Dowson, C.G., Donoghue, D. & Mahenthiralingam, E. (2013) Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria. Antimicrobial Agents and Chemotherapy, 57, 2972-2980.
Russell, A.D. (2003) Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. The Lancet Infectious Diseases, 3, 794-803.
Shin, B. & Park, W. (2017) Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy. Journal of Microbiology, 55, 837-849.
Siegert, W. (2013) Comparison of microbial challenge testing methods for cosmetics. HPC Today - Househ Pers Care Today, 8, 32-39.
Smart, R. & Spooner, D. (1972) Microbiological spoilage in pharmaceuticals and cosmetics. Journal of the Society of Cosmetic Chemists, 23, 721-737.
Sprouffske, K. & Wagner, A. (2016) Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinformatics, 17.
Theophel, K., Schacht, V.J., Schlüter, M., Schnell, S., Stingu, C.-S., Schaumann, R. et al. (2014) The importance of growth kinetic analysis in determining bacterial susceptibility against antibiotics and silver nanoparticles. Frontiers in Microbiology, 5.
United State Pharmacopoeia. (2011) The United States Pharmacopeial Convention. Baltimore, MD. pp. 1233-1234. ed. USP 30 NF 25.
Valkova, N., Lépine, F., Bollet, C., Dupont, M. & Villemur, R. (2002) prbA, a gene coding for an esterase hydrolyzing parabens in Enterobacter cloacae and Enterobacter gergoviae strains. Journal of Bacteriology, 184, 5011-5017.
Varvaresou, A., Papageorgiou, S., Tsirivas, E., Protopapa, E., Kintziou, H., Kefala, V. et al. (2009) Self-preserving cosmetics. International Journal of Cosmetic Science, 31, 163-175.
Vincze, S., Al Dahouk, S. & Dieckmann, R. (2019) Microbiological safety of non-food products: what can we learn from the RAPEX database? International Journal of Environmental Research and Public Health, 16, 1599.
Wesgate, R., Menard-Szczebara, F., Khodr, A., Cupferman, S. & Maillard, J.-Y. (2020) Hydroxyethoxy phenyl butanone, a new cosmetic preservative, does not cause bacterial cross-resistance to antimicrobials. Journal of Medical Microbiology, 69, 670-675.
Yogiara, H.S.J., Park, S., Hwang, J.-K. & Pan, J.-G. (2015) Food-grade antimicrobials potentiate the antibacterial activity of 1,2-hexanediol. Letters in Applied Microbiology, 60, 431-439.
Youenou, B., Favre-Bonté, S., Bodilis, J., Brothier, E., Dubost, A., Muller, D. et al. (2015) Comparative genomics of environmental and clinical Stenotrophomonas maltophilia strains with different antibiotic resistance profiles. Genome Biology and Evolution, 7, 2484-2505.
Youenou, B., Hien, E., Deredjian, A., Brothier, E., Favre-Bonté, S. & Nazaret, S. (2016) Impact of untreated urban waste on the prevalence and antibiotic resistance profiles of human opportunistic pathogens in agricultural soils from Burkina Faso. Environmental Science and Pollution Research, 23, 25299-25311.