Design of Microchannel Suitable for Packing with Anion Exchange Resins: Uranium Separation from Seawater Containing a Large Amount of Cesium.
Resin-packed microchannel
design of microchannel
inductively coupled plasma mass spectrometry
seawater
uranium separation
Journal
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
ISSN: 1348-2246
Titre abrégé: Anal Sci
Pays: Switzerland
ID NLM: 8511078
Informations de publication
Date de publication:
10 Dec 2021
10 Dec 2021
Historique:
pubmed:
27
7
2021
medline:
15
12
2021
entrez:
26
7
2021
Statut:
ppublish
Résumé
We present a resin-packed microchannel that can reduce the radiation exposure risk and secondary radioactive wastes during uranium (U) separation by downscaling the separation using a microchip. Two types of microchips were designed to densely pack the microchannels with resins. The microchannels had almost the same cross-sectional area, but different outer circumferences. A satisfactory separation performance could be obtained by arranging more than ca. 10 resins along the depth and width of the microchannels. A resin-packed microchannel is an effective separation technique for determining the U concentration via inductively coupled plasma mass spectrometry owing to its ability to avoid the contamination of equipment by cesium, and to reduce the matrix effect. The size of the separation site was scaled down to <1/5000 compared to commonly used counterparts. The radiation exposure risk and secondary radioactive wastes can be reduced by 10- and 800-fold, respectively, using a resin-packed microchannel.
Identifiants
pubmed: 34305053
doi: 10.2116/analsci.21P110
pii: 10.2116/analsci.21P110
doi:
Substances chimiques
Anion Exchange Resins
0
Cesium
1KSV9V4Y4I
Uranium
4OC371KSTK
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1789-1794Références
Examination Status for Alpha Nuclide Removal, Compilation prepared by Tokyo Electric Power Company Holdings, Inc. (TEPCO), https://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osensuitaisakuteam/2021/01/index.html.
J. S. Santos, L. S. G. Teixeira, W. N. L. dos Santos, V. A. Lemos, J. M. Godoy, and S. L. C. Ferreira, Anal. Chim. Acta, 2010, 674, 143.
doi: 10.1016/j.aca.2010.06.010
pubmed: 20678624
R. Kuroda, K. Oguma, N. Mukai, and M. Iwamoto, Talanta, 1987, 34, 433.
doi: 10.1016/0039-9140(87)80066-8
pubmed: 18964330
K. Kato, M. Ito, and K. Watanabe, Fresenius J. Anal. Chem., 2000, 366, 54.
doi: 10.1007/s002160050011
M. Riegel and V. Schlitt, Water, 2017, 9, 268.
doi: 10.3390/w9040268
E. P. Horwitz, M. L. Dietz, R. Chiarizia, H. Diamond, A. M. Essling, and D. Graczyk, Anal. Chim. Acta, 1992, 266, 25.
doi: 10.1016/0003-2670(92)85276-C
A. Fujiwara, Y. Kameo, A. Hoshi, T. Haraga, and M. Nakashima, J. Chromatogr. A, 2007, 1140, 163.
doi: 10.1016/j.chroma.2006.11.084
pubmed: 17161412
Y. Kameo, A Shimada, K. Ishimori, T. Haraga, A. Katayama, A. Hoshi, and M. Nakashima, JAEA-Tech., 2009, 051.
K. Mawatari, Y. Kazoe, A. Aota, T. Tsukahara, K. Sato, and T. Kitamori, J. Flow Chem., 2011, 1, 3.
doi: 10.1556/jfchem.2011.00003
H. Hotokezaka, M. Tokeshi, M. Harada, T. Kitamori, and Y. Ikeda, Prog. Nucl. Energy, 2005, 47, 439.
doi: 10.1016/j.pnucene.2005.05.045
M. Yamamoto, S. Taguchi, S, Sato, and N. Surugaya, J. Sep. Sci., 2015, 38, 1807.
doi: 10.1002/jssc.201401315
pubmed: 25754948
D. V. Khoai, T. Yamamoto, Y. Ukita, and Y. Takamura, J. Appl. Phys., 2014, 53, 05FS01–1.
T. Tsukahara, H. Hotokezaka, M. Harada, Y. Kikutani, M. Tokeshi, and Y. Ikeda, Microfluid. Nanofluid., 2013, 14, 989.
doi: 10.1007/s10404-012-1106-4
L. Evans III and G. E. Collins, J. Chromatogr. A, 2001, 911, 127.
doi: 10.1016/S0021-9673(00)01254-1
pubmed: 11269590
G. Hellé, C. Mariet, and G. Cote, Talanta, 2015, 139, 123.
doi: 10.1016/j.talanta.2015.02.046
pubmed: 25882417
J. P. Grinias and R. T. Kennedy, Trends Anal. Chem., 2016, 81, 110.
doi: 10.1016/j.trac.2015.08.002
A. Kecskemeti and A. Gaspar, Anal. Chim. Acta, 2018, 1021, 1.
doi: 10.1016/j.aca.2018.01.064
pubmed: 29681275
J. Gao, B. T. Manard, A. Castro, D. P. Montoya, N. Xu, and R. M. Chamberlin, Talanta, 2017, 167, 8.
doi: 10.1016/j.talanta.2017.01.080
pubmed: 28340791
T. Kitagaki, T. Kaneshiki, M. Nomura, and T. Suzuki, J. Nucl. Sci. Technol., 2016, 53, 1639.
doi: 10.1080/00223131.2016.1150219
L. Yang, K. Nadeau, J. Meija, P. Grinberg, E. Pagliano, F. Ardini, M. Grotti, C. Schlosser, P. Streu, E. P. Achterberg, Y. Sohrin, T. Minami, L. Zheng, J. Wu, G. Chen, M. J. Ellwood, C. Turetta, A. Aguilar-Islas, R. Rember, G. Sarthou, M. Tonnard, H. Planquette, T. Matoušek, S. Crum, and Z. Mester, Anal. Bioanal. Chem., 2018, 410, 4469.
doi: 10.1007/s00216-018-1102-y
pubmed: 29721576
K. Morikawa, K. Matsushita, and T. Tsukahara, Anal. Sci., 2017, 33, 1453.
doi: 10.2116/analsci.33.1453
pubmed: 29225239
K. Morikawa, Y. Kazoe, Y. Takagi, Y. Tsuyama, Y. Pihosh, T. Tsukahara, and T. Kitamori, Micromachines, 2020, 11, 995.
doi: 10.3390/mi11110995
pubmed: 33182488
pmcid: 7697862
K. A. Kraus and F. Nelson, in Proceedings of Peaceful Uses of Atomic Energy, 1956, Geneve, 7, 11.
Y. Qu, J. Sun, F Li, C. Zhang, and Q. Zhou, in Proceedings of 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, 2009, China.