Cleaving arene rings for acyclic alkenylnitrile synthesis.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
09 2021
Historique:
received: 17 02 2021
accepted: 06 07 2021
pubmed: 20 7 2021
medline: 20 7 2021
entrez: 19 7 2021
Statut: ppublish

Résumé

Synthetic chemistry is built around the formation of carbon-carbon bonds. However, the development of methods for selective carbon-carbon bond cleavage is a largely unmet challenge

Identifiants

pubmed: 34280952
doi: 10.1038/s41586-021-03801-y
pii: 10.1038/s41586-021-03801-y
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

64-69

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

National Research Council (US) Health and Medicine: Challenges for the Chemical Sciences in the 21st Century (National Academies Press, 2004).
Jones, W. D. The fall of the C–C bond. Nature 364, 676–677 (1993).
doi: 10.1038/364676a0
Zhu, J., Wang, J. & Dong, G. Catalytic activation of unstrained C(aryl) –C(aryl) bonds in 2,2′-biphenols. Nat. Chem. 11, 45–51 (2019).
pubmed: 30397321 doi: 10.1038/s41557-018-0157-x
Guengerich, F. P. & Yoshimoto, F. K. Formation and cleavage of C–C Bonds by enzymatic oxidation–reduction reactions. Chem. Rev. 118, 6573–6655 (2018).
pubmed: 29932643 doi: 10.1021/acs.chemrev.8b00031
Jakoobi, M. & Sergeev, A. G. Transition-metal-mediated cleavage of C–C bonds in aromatic rings. Chem. Asian J. 14, 2181–2192 (2019).
pubmed: 31051048 doi: 10.1002/asia.201900443
Murakami, M. & Chatani, N. Cleavage of Carbon–Carbon Single Bonds by Transition Metals (Wiley, 2015).
Mortier, J. Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds (Wiley, 2015).
Benitez, V. M., Grau, J. M., Yori, J. C., Pieck, C. L. & Vera, C. R. Hydroisomerization of benzene-containing paraffinic feedstocks over Pt/WO
doi: 10.1021/ef060165e
Sattler, A. & Parkin, G. Cleaving carbon–carbon bonds by inserting tungsten into unstrained aromatic rings. Nature 463, 523–526 (2010).
pubmed: 20110998 doi: 10.1038/nature08730
Hu, S., Shima, T. & Hou, Z. Carbon–carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride. Nature 512, 413–415 (2014).
pubmed: 25164752 doi: 10.1038/nature13624
Bugg, T. D. H. & Winfield, C. J. Enzymatic cleavage of aromatic rings: mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathways. Nat. Prod. Rep. 15, 513–530 (1998).
doi: 10.1039/a815513y
Wilson, J. Celebrating Michael Faraday’s discovery of benzene. Ambix 59, 241–265 (2013).
doi: 10.1179/174582312X13457672281821
Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).
pubmed: 12037558 doi: 10.1038/417507a
Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).
pubmed: 27072661 doi: 10.1039/C6CS00075D
Wang, Y., Li, J. & Liu, A. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. J. Biol. Inorg. Chem. 22, 395–405 (2017).
pubmed: 28084551 pmcid: 5360381 doi: 10.1007/s00775-017-1436-5
Siddiqi, Z., Wertjes, W. C. & Sarlah, D. Chemical equivalent of arene monooxygenases: dearomative synthesis of arene oxides and oxepines. J. Am. Chem. Soc. 142, 10125–10131 (2020).
pubmed: 32383862 pmcid: 7327703 doi: 10.1021/jacs.0c02724
Kong, R. Y. & Crimmin, M. R. Chemoselective C–C σ‐bond activation of the most stable ring in biphenylene. Angew. Chem. Int. Ed. 60, 2619–2623 (2021).
doi: 10.1002/anie.202011594
Nakagawa, K. & Onoue, H. Oxidation of o-phenylenediamines with lead tetra-acetate. Chem. Commun. (London) 396a (1965).
Nakagawa, K. & Onoue, H. Oxidation with nickel peroxide. V. The formation of cis,cis-1,4-dicyano-1,3-butadienes in the oxidation of o-phenylendiamines. Tetrahedr. Lett. 6, 1433–1436 (1965).
doi: 10.1016/S0040-4039(00)90084-4
Kajimoto, T., Takahashi, H. & Tsuji, J. Copper-catalyzed oxidation of o-phenylenediamines to cis,cis-mucononitriles. J. Org. Chem. 41, 1389–1393 (1976).
doi: 10.1021/jo00870a021
Buchner, E. & Curtius, T. Synthese von Ketonsäureäthern aus Aldehyden und Diazoessigäther. Ber. Dtsch. Chem. Ges. 18, 2371–2377 (1885).
doi: 10.1002/cber.188501802118
Chapman, O. L. & Leroux, J. P. 1-Aza-1,2,4,6-cycloheptatetraene. J. Am. Chem. Soc. 100, 282–285 (1978).
doi: 10.1021/ja00469a049
Satake, K., Mizushima, H., Kimura, M. & Morosawa, S. The reactions of nitrene for the conjugated π-systems. Heterocycles 23, 195 (1985).
doi: 10.3987/R-1985-01-0195
Liu, L. L. et al. A transient vinylphosphinidene via a phosphirene-phosphinidene rearrangement. J. Am. Chem. Soc. 140, 147–150 (2018).
pubmed: 29272583 doi: 10.1021/jacs.7b11791
Hall, J. H. Dinitrenes from o-diazides. synthesis of 1,4-dicyano-1,3-butadienes. J. Am. Chem. Soc. 87, 1147–1148 (1965).
doi: 10.1021/ja01083a047
Campbell, C. D. & Rees, C. W. Oxidation of 1- and 2-aminobenzotriazole. Chem. Commun. (London) 192–193 (1965).
Nicolaides, A. et al. Of ortho-conjugatively linked reactive intermediates: the cases of ortho-phenylene-(bis)nitrene, -carbenonitrene, and -(bis)carbene. J. Am. Chem. Soc. 121, 10563–10572 (1999).
Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).
doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
Chen, Y., Kamlet, A. S., Steinman, J. B. & Liu, D. R. A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. Nat. Chem. 3, 146–153 (2011).
pubmed: 21258388 pmcid: 3078041 doi: 10.1038/nchem.932
Prescher, J. A., Dube, D. H. & Bertozzi, C. R. Chemical remodelling of cell surfaces in living animals. Nature 430, 873–877 (2004).
pubmed: 15318217 doi: 10.1038/nature02791
Haag, S. M. et al. Targeting STING with covalent small-molecule inhibitors. Nature 559, 269–273 (2018).
pubmed: 29973723 doi: 10.1038/s41586-018-0287-8
Meng, G. et al. Modular click chemistry libraries for functional screens using a diazotizing reagent. Nature 574, 86–89 (2019).
pubmed: 31578481 doi: 10.1038/s41586-019-1589-1
Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517, 600–604 (2015).
pubmed: 25631448 pmcid: 4311404 doi: 10.1038/nature14127
Zhdankin, V. V. et al. Preparation, X-ray crystal structure, and chemistry of stable azidoiodinanes derivatives of benziodoxole. J. Am. Chem. Soc. 118, 5192–5197 (1996).
doi: 10.1021/ja954119x
Huang, X., Bergsten, T. M. & Groves, J. T. Manganese-catalyzed late-stage aliphatic C–H azidation. J. Am. Chem. Soc. 137, 5300–5303 (2015).
pubmed: 25871027 doi: 10.1021/jacs.5b01983
Schmidt, K. F. Über die Einwirkung von NH auf organische Verbindungen. Angew. Chem. 36, 511 (1923).
Schmidt, K. F. Über den Imin-Rest. Ber. Dtsch. Chem. Ges. 57B, 704–706 (1924).
doi: 10.1002/cber.19240570423
Liu, J. et al. From alkylarenes to anilines via site-directed carbon–carbon amination. Nat. Chem. 11, 71–77 (2018).
pubmed: 30374038 doi: 10.1038/s41557-018-0156-y
Fu, N., Sauer, G. S., Saha, A., Loo, A. & Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Science 357, 575–579 (2017).
pubmed: 28798126 doi: 10.1126/science.aan6206
Scriven, E. F. V. & Turnbull, K. Azides: their preparation and synthetic uses. Chem. Rev. 88, 297–368 (1988).
doi: 10.1021/cr00084a001
Lombardi, F. et al. Quantum units from the topological engineering of molecular graphenoids. Science 366, 1107–1110 (2019).
pubmed: 31780554 doi: 10.1126/science.aay7203
Kolmer, M. et al. Fluorine-programmed nanozipping to tailored nanographenes on rutile TiO
pubmed: 30606840 doi: 10.1126/science.aav4954
Yano, Y. et al. Living annulative pi-extension polymerization for graphene nanoribbon synthesis. Nature 571, 387–392 (2019).
pubmed: 31243361 doi: 10.1038/s41586-019-1331-z
Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005).
pubmed: 16109874 doi: 10.1126/science.1109778
Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).
pubmed: 27853213 doi: 10.1038/nature20102
Bakhoda, A. G., Jiang, Q., Bertke, J. A., Cundari, T. R. & Warren, T. H. Elusive terminal copper arylnitrene intermediates. Angew. Chem. Int. Ed. 56, 6426–6430 (2017).
doi: 10.1002/anie.201611275
Carsch, K. M. et al. Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination. Science 365, 1138–1143 (2019).
pubmed: 31515388 pmcid: 7256962 doi: 10.1126/science.aax4423
Allen, S. E., Walvoord, R. R., Padilla-Salinas, R. & Kozlowski, M. C. Aerobic copper-catalyzed organic reactions. Chem. Rev. 113, 6234–6458 (2013).
pubmed: 23786461 pmcid: 3818381 doi: 10.1021/cr300527g
McCann, S. D. & Stahl, S. S. Copper-catalyzed aerobic oxidations of organic molecules: pathways for two-electron oxidation with a four-electron oxidant and a one-electron redox-active catalyst. Acc. Chem. Res. 48, 1756–1766 (2015).
pubmed: 26020118 doi: 10.1021/acs.accounts.5b00060

Auteurs

Xu Qiu (X)

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.

Yueqian Sang (Y)

State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.

Hao Wu (H)

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China.

Xiao-Song Xue (XS)

Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.

Zixi Yan (Z)

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.

Yachong Wang (Y)

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.

Zengrui Cheng (Z)

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.

Xiaoyang Wang (X)

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.

Hui Tan (H)

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.

Song Song (S)

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.

Guisheng Zhang (G)

Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China.

Xiaohui Zhang (X)

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.

K N Houk (KN)

Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. houk@chem.ucla.edu.

Ning Jiao (N)

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China. jiaoning@pku.edu.cn.
State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, China. jiaoning@pku.edu.cn.

Classifications MeSH