Cleaving arene rings for acyclic alkenylnitrile synthesis.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
17
02
2021
accepted:
06
07
2021
pubmed:
20
7
2021
medline:
20
7
2021
entrez:
19
7
2021
Statut:
ppublish
Résumé
Synthetic chemistry is built around the formation of carbon-carbon bonds. However, the development of methods for selective carbon-carbon bond cleavage is a largely unmet challenge
Identifiants
pubmed: 34280952
doi: 10.1038/s41586-021-03801-y
pii: 10.1038/s41586-021-03801-y
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
64-69Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
National Research Council (US) Health and Medicine: Challenges for the Chemical Sciences in the 21st Century (National Academies Press, 2004).
Jones, W. D. The fall of the C–C bond. Nature 364, 676–677 (1993).
doi: 10.1038/364676a0
Zhu, J., Wang, J. & Dong, G. Catalytic activation of unstrained C(aryl) –C(aryl) bonds in 2,2′-biphenols. Nat. Chem. 11, 45–51 (2019).
pubmed: 30397321
doi: 10.1038/s41557-018-0157-x
Guengerich, F. P. & Yoshimoto, F. K. Formation and cleavage of C–C Bonds by enzymatic oxidation–reduction reactions. Chem. Rev. 118, 6573–6655 (2018).
pubmed: 29932643
doi: 10.1021/acs.chemrev.8b00031
Jakoobi, M. & Sergeev, A. G. Transition-metal-mediated cleavage of C–C bonds in aromatic rings. Chem. Asian J. 14, 2181–2192 (2019).
pubmed: 31051048
doi: 10.1002/asia.201900443
Murakami, M. & Chatani, N. Cleavage of Carbon–Carbon Single Bonds by Transition Metals (Wiley, 2015).
Mortier, J. Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds (Wiley, 2015).
Benitez, V. M., Grau, J. M., Yori, J. C., Pieck, C. L. & Vera, C. R. Hydroisomerization of benzene-containing paraffinic feedstocks over Pt/WO
doi: 10.1021/ef060165e
Sattler, A. & Parkin, G. Cleaving carbon–carbon bonds by inserting tungsten into unstrained aromatic rings. Nature 463, 523–526 (2010).
pubmed: 20110998
doi: 10.1038/nature08730
Hu, S., Shima, T. & Hou, Z. Carbon–carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride. Nature 512, 413–415 (2014).
pubmed: 25164752
doi: 10.1038/nature13624
Bugg, T. D. H. & Winfield, C. J. Enzymatic cleavage of aromatic rings: mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathways. Nat. Prod. Rep. 15, 513–530 (1998).
doi: 10.1039/a815513y
Wilson, J. Celebrating Michael Faraday’s discovery of benzene. Ambix 59, 241–265 (2013).
doi: 10.1179/174582312X13457672281821
Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).
pubmed: 12037558
doi: 10.1038/417507a
Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).
pubmed: 27072661
doi: 10.1039/C6CS00075D
Wang, Y., Li, J. & Liu, A. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. J. Biol. Inorg. Chem. 22, 395–405 (2017).
pubmed: 28084551
pmcid: 5360381
doi: 10.1007/s00775-017-1436-5
Siddiqi, Z., Wertjes, W. C. & Sarlah, D. Chemical equivalent of arene monooxygenases: dearomative synthesis of arene oxides and oxepines. J. Am. Chem. Soc. 142, 10125–10131 (2020).
pubmed: 32383862
pmcid: 7327703
doi: 10.1021/jacs.0c02724
Kong, R. Y. & Crimmin, M. R. Chemoselective C–C σ‐bond activation of the most stable ring in biphenylene. Angew. Chem. Int. Ed. 60, 2619–2623 (2021).
doi: 10.1002/anie.202011594
Nakagawa, K. & Onoue, H. Oxidation of o-phenylenediamines with lead tetra-acetate. Chem. Commun. (London) 396a (1965).
Nakagawa, K. & Onoue, H. Oxidation with nickel peroxide. V. The formation of cis,cis-1,4-dicyano-1,3-butadienes in the oxidation of o-phenylendiamines. Tetrahedr. Lett. 6, 1433–1436 (1965).
doi: 10.1016/S0040-4039(00)90084-4
Kajimoto, T., Takahashi, H. & Tsuji, J. Copper-catalyzed oxidation of o-phenylenediamines to cis,cis-mucononitriles. J. Org. Chem. 41, 1389–1393 (1976).
doi: 10.1021/jo00870a021
Buchner, E. & Curtius, T. Synthese von Ketonsäureäthern aus Aldehyden und Diazoessigäther. Ber. Dtsch. Chem. Ges. 18, 2371–2377 (1885).
doi: 10.1002/cber.188501802118
Chapman, O. L. & Leroux, J. P. 1-Aza-1,2,4,6-cycloheptatetraene. J. Am. Chem. Soc. 100, 282–285 (1978).
doi: 10.1021/ja00469a049
Satake, K., Mizushima, H., Kimura, M. & Morosawa, S. The reactions of nitrene for the conjugated π-systems. Heterocycles 23, 195 (1985).
doi: 10.3987/R-1985-01-0195
Liu, L. L. et al. A transient vinylphosphinidene via a phosphirene-phosphinidene rearrangement. J. Am. Chem. Soc. 140, 147–150 (2018).
pubmed: 29272583
doi: 10.1021/jacs.7b11791
Hall, J. H. Dinitrenes from o-diazides. synthesis of 1,4-dicyano-1,3-butadienes. J. Am. Chem. Soc. 87, 1147–1148 (1965).
doi: 10.1021/ja01083a047
Campbell, C. D. & Rees, C. W. Oxidation of 1- and 2-aminobenzotriazole. Chem. Commun. (London) 192–193 (1965).
Nicolaides, A. et al. Of ortho-conjugatively linked reactive intermediates: the cases of ortho-phenylene-(bis)nitrene, -carbenonitrene, and -(bis)carbene. J. Am. Chem. Soc. 121, 10563–10572 (1999).
Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).
doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
Chen, Y., Kamlet, A. S., Steinman, J. B. & Liu, D. R. A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. Nat. Chem. 3, 146–153 (2011).
pubmed: 21258388
pmcid: 3078041
doi: 10.1038/nchem.932
Prescher, J. A., Dube, D. H. & Bertozzi, C. R. Chemical remodelling of cell surfaces in living animals. Nature 430, 873–877 (2004).
pubmed: 15318217
doi: 10.1038/nature02791
Haag, S. M. et al. Targeting STING with covalent small-molecule inhibitors. Nature 559, 269–273 (2018).
pubmed: 29973723
doi: 10.1038/s41586-018-0287-8
Meng, G. et al. Modular click chemistry libraries for functional screens using a diazotizing reagent. Nature 574, 86–89 (2019).
pubmed: 31578481
doi: 10.1038/s41586-019-1589-1
Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517, 600–604 (2015).
pubmed: 25631448
pmcid: 4311404
doi: 10.1038/nature14127
Zhdankin, V. V. et al. Preparation, X-ray crystal structure, and chemistry of stable azidoiodinanes derivatives of benziodoxole. J. Am. Chem. Soc. 118, 5192–5197 (1996).
doi: 10.1021/ja954119x
Huang, X., Bergsten, T. M. & Groves, J. T. Manganese-catalyzed late-stage aliphatic C–H azidation. J. Am. Chem. Soc. 137, 5300–5303 (2015).
pubmed: 25871027
doi: 10.1021/jacs.5b01983
Schmidt, K. F. Über die Einwirkung von NH auf organische Verbindungen. Angew. Chem. 36, 511 (1923).
Schmidt, K. F. Über den Imin-Rest. Ber. Dtsch. Chem. Ges. 57B, 704–706 (1924).
doi: 10.1002/cber.19240570423
Liu, J. et al. From alkylarenes to anilines via site-directed carbon–carbon amination. Nat. Chem. 11, 71–77 (2018).
pubmed: 30374038
doi: 10.1038/s41557-018-0156-y
Fu, N., Sauer, G. S., Saha, A., Loo, A. & Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Science 357, 575–579 (2017).
pubmed: 28798126
doi: 10.1126/science.aan6206
Scriven, E. F. V. & Turnbull, K. Azides: their preparation and synthetic uses. Chem. Rev. 88, 297–368 (1988).
doi: 10.1021/cr00084a001
Lombardi, F. et al. Quantum units from the topological engineering of molecular graphenoids. Science 366, 1107–1110 (2019).
pubmed: 31780554
doi: 10.1126/science.aay7203
Kolmer, M. et al. Fluorine-programmed nanozipping to tailored nanographenes on rutile TiO
pubmed: 30606840
doi: 10.1126/science.aav4954
Yano, Y. et al. Living annulative pi-extension polymerization for graphene nanoribbon synthesis. Nature 571, 387–392 (2019).
pubmed: 31243361
doi: 10.1038/s41586-019-1331-z
Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005).
pubmed: 16109874
doi: 10.1126/science.1109778
Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).
pubmed: 27853213
doi: 10.1038/nature20102
Bakhoda, A. G., Jiang, Q., Bertke, J. A., Cundari, T. R. & Warren, T. H. Elusive terminal copper arylnitrene intermediates. Angew. Chem. Int. Ed. 56, 6426–6430 (2017).
doi: 10.1002/anie.201611275
Carsch, K. M. et al. Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination. Science 365, 1138–1143 (2019).
pubmed: 31515388
pmcid: 7256962
doi: 10.1126/science.aax4423
Allen, S. E., Walvoord, R. R., Padilla-Salinas, R. & Kozlowski, M. C. Aerobic copper-catalyzed organic reactions. Chem. Rev. 113, 6234–6458 (2013).
pubmed: 23786461
pmcid: 3818381
doi: 10.1021/cr300527g
McCann, S. D. & Stahl, S. S. Copper-catalyzed aerobic oxidations of organic molecules: pathways for two-electron oxidation with a four-electron oxidant and a one-electron redox-active catalyst. Acc. Chem. Res. 48, 1756–1766 (2015).
pubmed: 26020118
doi: 10.1021/acs.accounts.5b00060