Effect of sodium-glucose cotransporter 2 inhibitors on hemoglobin and hematocrit levels in type 2 diabetes: a systematic review and meta-analysis.
Anemia
Canagliflozin
Dapagliflozin
Diabetes mellitus
Empagliflozin
Ipragliflozin
SGLT2 inhibitors
Journal
International urology and nephrology
ISSN: 1573-2584
Titre abrégé: Int Urol Nephrol
Pays: Netherlands
ID NLM: 0262521
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
received:
02
04
2021
accepted:
06
07
2021
pubmed:
18
7
2021
medline:
18
3
2022
entrez:
17
7
2021
Statut:
ppublish
Résumé
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) improve outcomes of patients with type 2 diabetes at high cardiovascular risk and chronic kidney disease. Recent studies showed an increase in hemoglobin and hematocrit after SGLT2i treatment. We did a systematic review and meta-analysis of randomized, double-blind, placebo-controlled studies of SGLT2i in patients with type 2 diabetes. We searched through PubMed/Medline, Web of Science, Embase (Elsevier), and the Cochrane Central Register of Controlled Trials (Wiley) from January 2010 to January 2021. We included seventeen randomized, double-blind, placebo-controlled studies. The total number of evaluated patients was 14,748. The treatment arm consisted of canagliflozin, dapagliflozin, empagliflozin and ipragliflozin. SGLT2i therapy significantly increased hemoglobin levels when compared to placebo (MD 5.60 g/L, 95% CI 3.73-7.47 g/L, P < 0.00001, considerable heterogeneity-I SGLT2i led to significant increases in hemoglobin and hematocrit levels when compared to placebo. In addition to their cardiovascular effect, SGLT2i also increases hemoglobin and hematocrit levels.
Sections du résumé
BACKGROUND
BACKGROUND
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) improve outcomes of patients with type 2 diabetes at high cardiovascular risk and chronic kidney disease. Recent studies showed an increase in hemoglobin and hematocrit after SGLT2i treatment.
MATERIALS AND METHODS
METHODS
We did a systematic review and meta-analysis of randomized, double-blind, placebo-controlled studies of SGLT2i in patients with type 2 diabetes. We searched through PubMed/Medline, Web of Science, Embase (Elsevier), and the Cochrane Central Register of Controlled Trials (Wiley) from January 2010 to January 2021.
RESULTS
RESULTS
We included seventeen randomized, double-blind, placebo-controlled studies. The total number of evaluated patients was 14,748. The treatment arm consisted of canagliflozin, dapagliflozin, empagliflozin and ipragliflozin. SGLT2i therapy significantly increased hemoglobin levels when compared to placebo (MD 5.60 g/L, 95% CI 3.73-7.47 g/L, P < 0.00001, considerable heterogeneity-I
CONCLUSIONS
CONCLUSIONS
SGLT2i led to significant increases in hemoglobin and hematocrit levels when compared to placebo. In addition to their cardiovascular effect, SGLT2i also increases hemoglobin and hematocrit levels.
Identifiants
pubmed: 34273060
doi: 10.1007/s11255-021-02943-2
pii: 10.1007/s11255-021-02943-2
doi:
Substances chimiques
Hemoglobins
0
Hypoglycemic Agents
0
Sodium-Glucose Transporter 2 Inhibitors
0
Types de publication
Journal Article
Meta-Analysis
Review
Systematic Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
827-841Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Cherney DZ, Kanbay M, Lovshin JA (2020) Renal physiology of glucose handling and therapeutic implications. Nephrol Dial Transplant 35:i3–i12
doi: 10.1093/ndt/gfz230
Fernandez-Fernandez B, Sarafidis P, Kanbay M, Navarro-Gonzalez JF, Soler MJ, Gorriz JL, Ortiz A (2020) SGLT2 inhibitors for non-diabetic kidney disease: drugs to treat CKD that also improve glycaemia. Clin Kidney J 13:728–733
doi: 10.1093/ckj/sfaa198
Kanbay M, Ertuglu LA, Afsar B, Ozdogan E, Kucuksumer ZS, Ortiz A, Covic A, Kuwabara M, Cherney DZI, van Raalte DH, de Zeeuw D (2019) Renal hyperfiltration defined by high estimated glomerular filtration rate: a risk factor for cardiovascular disease and mortality. Diabetes Obes Metab 21:2368–2383
doi: 10.1111/dom.13831
Yilmaz MI, Solak Y, Covic A, Goldsmith D, Kanbay M (2011) Renal anemia of inflammation: the name is self-explanatory. Blood Purif 32:220–225
doi: 10.1159/000328037
Kanbay M, Perazella MA, Kasapoglu B, Koroglu M, Covic A (2010) Erythropoiesis stimulatory agent- resistant anemia in dialysis patients: review of causes and management. Blood Purif 29:1–12
doi: 10.1159/000245041
Solak Y, Cetiner M, Siriopol D, Tarim K, Afsar B, Covic A, Kanbay M (2016) Novel masters of erythropoiesis: hypoxia inducible factors and recent advances in anemia of renal disease. Blood Purif 42:160–167
doi: 10.1159/000446273
Copur S, Onal EM, Afsar B, Ortiz A, van Raalte DH, Cherney DZ, Rossing P, Kanbay M (2020) Diabetes mellitus in chronic kidney disease: Biomarkers beyond HbA1c to estimate glycemic control and diabetes-dependent morbidity and mortality. J Diabetes Complicat 34:107707
doi: 10.1016/j.jdiacomp.2020.107707
Maruyama T, Takashima H, Oguma H, Nakamura Y, Ohno M, Utsunomiya K, Furukawa T, Tei R, Abe M (2019) Canagliflozin improves erythropoiesis in diabetes patients with anemia of chronic kidney disease. Diabetes Technol Ther 21:713–720
doi: 10.1089/dia.2019.0212
Kovacs CS, Seshiah V, Swallow R, Jones R, Rattunde H, Woerle HJ, Broedl UC, investigators E-RPt (2014) Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes Metab 16:147–158
doi: 10.1111/dom.12188
List JF, Woo V, Morales E, Tang W, Fiedorek FT (2009) Sodium–glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 32:650–657
doi: 10.2337/dc08-1863
Bailey CJ, Iqbal N, T’Joen C, List JF (2012) Dapagliflozin monotherapy in drug-naive patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes Metab 14:951–959
doi: 10.1111/j.1463-1326.2012.01659.x
O’Neill J, Fasching A, Pihl L, Patinha D, Franzen S, Palm F (2015) Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am J Physiol Renal Physiol 309:F227-234
doi: 10.1152/ajprenal.00689.2014
Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, Usiskin K, Capuano G, Canovatchel W, Canagliflozin DIASG (2012) Dose-ranging effects of canagliflozin, a sodium–glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care 35:1232–1238
doi: 10.2337/dc11-1926
Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605
doi: 10.1007/s10654-010-9491-z
Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, Cochrane Bias Methods G, Cochrane Statistical Methods G (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928
doi: 10.1136/bmj.d5928
Higgins JPTTJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) (2019) Cochrane handbook for systematic reviews of interventions, 2nd edn. Wiley, Chichester
DerSimonian R, Kacker R (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials 28:105–114
doi: 10.1016/j.cct.2006.04.004
Haring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Woerle HJ, Broedl UC, Investigators E-RMT (2013) Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 36:3396–3404
doi: 10.2337/dc12-2673
Strojek K, Yoon KH, Hruba V, Elze M, Langkilde AM, Parikh S (2011) Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab 13:928–938
doi: 10.1111/j.1463-1326.2011.01434.x
Bailey CJ, Gross JL, Pieters A, Bastien A, List JF (2010) Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet 375:2223–2233
doi: 10.1016/S0140-6736(10)60407-2
Bolinder J, Ljunggren O, Kullberg J, Johansson L, Wilding J, Langkilde AM, Sugg J, Parikh S (2012) Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab 97:1020–1031
doi: 10.1210/jc.2011-2260
Bode B, Stenlof K, Sullivan D, Fung A, Usiskin K (1995) Efficacy and safety of canagliflozin treatment in older subjects with type 2 diabetes mellitus: a randomized trial. Hosp Pract 2013(41):72–84
Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF (2010) Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 33:2217–2224
doi: 10.2337/dc10-0612
Kaku K, Inoue S, Matsuoka O, Kiyosue A, Azuma H, Hayashi N, Tokudome T, Langkilde AM, Parikh S (2013) Efficacy and safety of dapagliflozin as a monotherapy for type 2 diabetes mellitus in Japanese patients with inadequate glycaemic control: a phase II multicentre, randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 15:432–440
doi: 10.1111/dom.12047
Lavalle-Gonzalez FJ, Januszewicz A, Davidson J, Tong C, Qiu R, Canovatchel W, Meininger G (2013) Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia 56:2582–2592
doi: 10.1007/s00125-013-3039-1
Rosenstock J, Vico M, Wei L, Salsali A, List JF (2012) Effects of dapagliflozin, an SGLT2 inhibitor, on HbA(1c), body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care 35:1473–1478
doi: 10.2337/dc11-1693
Stenlof K, Cefalu WT, Kim KA, Alba M, Usiskin K, Tong C, Canovatchel W, Meininger G (2013) Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab 15:372–382
doi: 10.1111/dom.12054
Wilding JP, Ferrannini E, Fonseca VA, Wilpshaar W, Dhanjal P, Houzer A (2013) Efficacy and safety of ipragliflozin in patients with type 2 diabetes inadequately controlled on metformin: a dose-finding study. Diabetes Obes Metab 15:403–409
doi: 10.1111/dom.12038
Wilding JP, Woo V, Soler NG, Pahor A, Sugg J, Rohwedder K, Parikh S, Dapagliflozin 006 Study G (2012) Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med 156:405–415
doi: 10.7326/0003-4819-156-6-201203200-00003
Yale JF, Bakris G, Cariou B, Yue D, David-Neto E, Xi L, Figueroa K, Wajs E, Usiskin K, Meininger G (2013) Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab 15:463–473
doi: 10.1111/dom.12090
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, Investigators E-RO (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128
doi: 10.1056/NEJMoa1504720
Rangaswami J, Bhalla V, de Boer IH, Staruschenko A, Sharp JA, Singh RR, Lo KB, Tuttle K, Vaduganathan M, Ventura H, McCullough PA, American Heart Association Council on the Kidney in Cardiovascular D, Council on Arteriosclerosis T, Vascular B, Council on C, Stroke N, Council on Clinical C, Council on L, Cardiometabolic H (2020) Cardiorenal protection with the newer antidiabetic agents in patients with diabetes and chronic kidney disease: a scientific statement from the American Heart Association. Circulation 142:e265–e286
doi: 10.1161/CIR.0000000000000920
Yerlikaya A, Bulbul MC, Afsar B, Dagel T, Aslan G, Voroneanu L, Siriopol D, Covic A, Kanbay M (2018) Iron in kidney and heart failure: from theory to practice. Int Urol Nephrol 50:481–493
doi: 10.1007/s11255-017-1708-6
Afsar B, Kanbay M, Afsar RE (2020) Hypoxia inducible factor-1 protects against COVID-19: a hypothesis. Med Hypotheses 143:109857
doi: 10.1016/j.mehy.2020.109857
Lawler PR, Liu H, Frankfurter C, Lovblom LE, Lytvyn Y, Burger D, Burns KD, Brinc D, Cherney DZI (2021) Changes in cardiovascular biomarkers associated with the sodium–glucose cotransporter 2 (SGLT2) inhibitor ertugliflozin in patients with chronic kidney disease and type 2 diabetes. Diabetes Care 2021 Mar;44(3):e45-e47. https://doi.org/10.2337/dc20-2265
doi: 10.2337/dc20-2265
pubmed: 33436398
Packer M (2020) Mutual antagonism of hypoxia-inducible factor isoforms in cardiac, vascular, and renal disorders.JACC Basic Transl Sci 5:961–968
doi: 10.1016/j.jacbts.2020.05.006
Bessho R, Takiyama Y, Takiyama T, Kitsunai H, Takeda Y, Sakagami H, Ota T (2019) Hypoxia-inducible factor-1alpha is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep 9:14754
doi: 10.1038/s41598-019-51343-1
Ghanim H, Abuaysheh S, Hejna J, Green K, Batra M, Makdissi A, Chaudhuri A, Dandona P (2020) Dapagliflozin suppresses hepcidin and increases erythropoiesis. J Clin Endocrinol Metab. 2020 Apr 1; 105(4):dgaa057
doi: 10.1210/clinem/dgz288
Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J (2013) Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 15:853–862
doi: 10.1111/dom.12127
Afsar B, Hornum M, Afsar RE, Ertuglu LA, Ortiz A, Covic A, van Raalte DH, Cherney DZI, Kanbay M (2021) Mitochondrion-driven nephroprotective mechanisms of novel glucose lowering medications. Mitochondrion 58:72–82
doi: 10.1016/j.mito.2021.02.016