Cord blood index predicts engraftment and early non-relapse mortality in adult patients with single-unit cord blood transplantation.


Journal

Bone marrow transplantation
ISSN: 1476-5365
Titre abrégé: Bone Marrow Transplant
Pays: England
ID NLM: 8702459

Informations de publication

Date de publication:
11 2021
Historique:
received: 08 02 2021
accepted: 30 06 2021
revised: 20 06 2021
pubmed: 17 7 2021
medline: 11 3 2022
entrez: 16 7 2021
Statut: ppublish

Résumé

How to select optimal cord blood (CB) remains an important clinical question. We developed and validated an index of CB engraftment, the cord blood index (CBI), which uses three weighted variables representing cell doses and HLA mismatches. We modeled the neutrophil engraftment time with competing events by random survival forests for competing risks as a function of the predictors: total nucleated cells, CD34, colony-forming units for granulocytes/macrophages, and the number of HLA mismatches at the antigen and allele levels. The CBI defined three groups that had different neutrophil engraftment rates at day 30 (High, 83.7% [95% CI, 79.2-88.1%]; Intermediate, 77.0% [95% CI, 73.7-80.2%]; Low, 68.4% [95% CI, 63.6-73.2%]), platelet engraftment rates at day 60 (High, 70.4% [95% CI, 64.9-75.9%]; Intermediate, 62.3% [95% CI, 58.5-66.0%]; Low, 49.3% [95% CI, 44.2-54.5%]), and non-relapse mortality at day 100 (High, 14.1% [95% CI, 9.9-18.3%]; Intermediate, 16.4% [95% CI, 13.5-19.3%]; Low, 21.3% [95% CI, 17.1-25.5%]). This novel approach is clinically beneficial and can be adopted immediately because it uses easily obtained pre-freeze data of CB.

Identifiants

pubmed: 34267354
doi: 10.1038/s41409-021-01406-7
pii: 10.1038/s41409-021-01406-7
doi:

Substances chimiques

Antigens, CD34 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2771-2778

Investigateurs

G Kondo (G)
F Ishimaru (F)
A Ogawa (A)
M Minemoto (M)
K Kashiwase (K)
F Azuma (F)
M Ito (M)
N Namba (N)
H Tsuno (H)
T Nagai (T)
K Muroi (K)
K Nakajima (K)

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 2013;122:491–8.
doi: 10.1182/blood-2013-02-453175
Milano F, Gooley T, Wood B, Woolfrey A, Flowers ME, Doney K, et al. Cord-blood transplantation in patients with minimal residual disease. N Engl J Med. 2016;375:944–53.
doi: 10.1056/NEJMoa1602074
Konuma T, Kanda J, Inamoto Y, Hayashi H, Kobayashi S, Uchida N, et al. Improvement of early mortality in single-unit cord blood transplantation for Japanese adults from 1998 to 2017. Am J Hematol. 2020;95:343–53.
doi: 10.1002/ajh.25705
Barker JN, Byam C, Scaradavou A. How I treat: the selection and acquisition of unrelated cord blood grafts. Blood. 2011;117:2332–9.
doi: 10.1182/blood-2010-04-280966
Hough R, Danby R, Russell N, Marks D, Veys P, Shaw B, et al. Recommendations for a standard UK approach to incorporating umbilical cord blood into clinical transplantation practice: an update on cord blood unit selection, donor selection algorithms and conditioning protocols. Br J Haematol. 2016;172:360–70.
doi: 10.1111/bjh.13802
Barker JN, Kurtzberg J, Ballen K, Boo M, Brunstein C, Cutler C, et al. Optimal practices in unrelated donor cord blood transplantation for hematologic malignancies. Biol Blood Marrow Transpl. 2017;23:882–96.
doi: 10.1016/j.bbmt.2017.03.006
Dehn J, Spellman S, Hurley CK, Shaw BE, Barker JN, Burns LJ, et al. Selection of unrelated donors and cord blood units for hematopoietic cell transplantation: guidelines from the NMDP/CIBMTR. Blood. 2019;134:924–34.
doi: 10.1182/blood.2019001212
Ruggeri A. Optimizing cord blood selection. Hematol Am Soc Hematol Educ Program. 2019;1:522–31.
doi: 10.1182/hematology.2019000056
Politikos I, Davis E, Nhaissi M, Wagner JE, Brunstein CG, Cohen S, et al. Guidelines for cord blood unit selection. Biol Blood Marrow Transpl. 2020;26:2190–6.
doi: 10.1016/j.bbmt.2020.07.030
Cohen YC, Scaradavou A, Stevens CE, Rubinstein P, Gluckman E, Rocha V, et al. Factors affecting mortality following myeloablative cord blood transplantation in adults: a pooled analysis of three international registries. Bone Marrow Transpl. 2011;46:70–6.
doi: 10.1038/bmt.2010.83
Rocha V, Gluckman E. Improving outcomes of cord blood transplantation: HLA matching, cell dose and other graft- and transplantation-related factors. Br J Haematol. 2009;147:262–74.
doi: 10.1111/j.1365-2141.2009.07883.x
Scaradavou A, Brunstein CG, Eapen M, Le-Rademacher J, Barker JN, Chao N, et al. Double unit grafts successfully extend the application of umbilical cord blood transplantation in adults with acute leukemia. Blood. 2013;121:752–8.
doi: 10.1182/blood-2012-08-449108
Wagner JE, Eapen M, Carter S, Wang Y, Schultz KR, Wall DA, et al. One-unit versus two-unit cord-blood transplantation for hematologic cancers. N Engl J Med. 2014;371:1685–94.
doi: 10.1056/NEJMoa1405584
Wagner JE, Barker JN, DeFor TE, Baker KS, Blazar BR, Eide C, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 2002;100:1611–8.
doi: 10.1182/blood-2002-01-0294
Konuma T, Kato S, Oiwa-Monna M, Tanoue S, Ogawa M, Isobe M, et al. Cryopreserved CD34+ cell dose, but not total nucleated cell dose, influences hematopoietic recovery and extensive chronic graft-versus-host disease after single-unit cord blood transplantation in adult patients. Biol Blood Marrow Transpl. 2017;23:1142–50.
doi: 10.1016/j.bbmt.2017.03.036
Migliaccio AR, Adamson JW, Stevens CE, Dobrila NL, Carrier CM, Rubinstein P. Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity. Blood. 2000;96:2717–22.
doi: 10.1182/blood.V96.8.2717
Page KM, Zhang L, Mendizabal A, Wease S, Carter S, Gentry T, et al. Total colony-forming units are a strong, independent predictor of neutrophil and platelet engraftment after unrelated umbilical cord blood transplantation: a single-center analysis of 435 cord blood transplants. Biol Blood Marrow Transpl. 2011;17:1362–74.
doi: 10.1016/j.bbmt.2011.01.011
Broxmeyer HE. Predicting the quality of transplantable cord blood collections through prefreeze and postthaw Apgar scoring. Transfusion. 2012;52:219–21.
doi: 10.1111/j.1537-2995.2011.03501.x
Page KM, Zhang L, Mendizabal A, Wease S, Carter S, Shoulars K, et al. The Cord Blood Apgar: a novel scoring system to optimize selection of banked cord blood grafts for transplantation. Transfusion. 2012;52:272–83.
doi: 10.1111/j.1537-2995.2011.03278.x
Eapen M, Klein JP, Sanz GF, Spellman S, Ruggeri A, Anasetti C, et al. Impact of donor-recipient HLA-matching at HLA-A, -B, -C, and –DRB1 on outcomes after umbilical cord blood transplantation for leukemia and myelodysplastic syndrome: a retrospective analysis. Lancet Oncol. 2011;12:1214–21.
doi: 10.1016/S1470-2045(11)70260-1
Eapen M, Klein JP, Ruggeri A, Spellman S, Lee SJ, Anasetti C, et al. Impact of allele-level HLA matching on outcomes after myeloablative single unit umbilical cord blood transplantation for hematologic malignancy. Blood. 2014;123:133–40.
doi: 10.1182/blood-2013-05-506253
Eapen M, Wang T, Veys PA, Boelens JJ, St Martin A, Spellman S, et al. Allele-level HLA matching for umbilical cord blood transplantation for non-malignant diseases in children: a retrospective analysis. Lancet Haematol. 2017;4:e325–33.
doi: 10.1016/S2352-3026(17)30104-7
Gluckman E. Role of HLA matching in single umbilical cord blood transplantation outcomes. Biol Blood Marrow Transpl. 2020;26:e53–4.
doi: 10.1016/j.bbmt.2019.12.014
Kanda J, Kawase T, Tanaka H, Kojima H, Morishima Y, Uchida N, et al. Effects of haplotype matching on outcomes after adult single-cord blood transplantation. Biol Blood Marrow Transpl. 2020;26:509–18.
doi: 10.1016/j.bbmt.2019.09.035
Yokoyama H, Morishima Y, Fuji S, Uchida N, Takahashi S, Onizuka M, et al. Impact of HLA mismatch at HLA-A, -B, -C, and –DRB1 in single cord blood transplantation. Biol Blood Marrow Transpl. 2020;26:519–28.
doi: 10.1016/j.bbmt.2019.11.001
Ishwaran H, Gerds TA, Kogalur UB, Moore RD, Gange SJ, Lau BM. Random survival forests for competing risks. Biostatistics. 2014;15:757–73.
doi: 10.1093/biostatistics/kxu010
Breiman L. Random forests. Mach Learn. 2001;45:5–32.
doi: 10.1023/A:1010933404324
Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.
doi: 10.1080/01621459.1999.10474144
Sobol U, Go A, Kliethermes S, Bufalino S, Rodriguez T, Smith S, et al. A prospective investigation of cell dose in single-unit umbilical cord blood transplantation for adults with high-risk hematologic malignancies. Bone Marrow Transpl. 2015;50:1519–25.
doi: 10.1038/bmt.2015.194
Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat. 1988;16:1141–54.
doi: 10.1214/aos/1176350951
Hussein E, DeFor T, Wagner JE, Sumstad D, Brunstein CG, McKenna DH. Evaluation of post-thaw CFU-GM: clinical utility and role in quality assessment of umbilical cord blood in patients receiving single unit transplant. Transfusion. 2020;60:144–54.
doi: 10.1111/trf.15592
Barker JN, Scaradavou A, Stevens CE. Combined effect of total nucleated cell dose and HLA match on transplantation outcome in 1061 cord blood recipients with hematologic malignancies. Blood. 2010;115:1843–9.
doi: 10.1182/blood-2009-07-231068
Castillo N, Garcia-Cadenas I, Barba P, Martino R, Azqueta C, Ferra C, et al. Post-thaw viable CD45+ cells and clonogenic efficiency are associated with better engraftment and outcomes after single cord blood transplantation in adult patients with malignant diseases. Biol Blood Marrow Transpl. 2015;21:2167–72.
doi: 10.1016/j.bbmt.2015.08.016
Scaradavou A, Smith KM, Hawke R, Schaible A, Abboud M, Kernan NA, et al. Cord blood units with low CD34+ cell viability have a low probability of engraftment after double unit transplantation. Biol Blood Marrow Transpl. 2010;16:500–8.
doi: 10.1016/j.bbmt.2009.11.013
Ponce DM, Lubin M, Gonzales AM, Byam C, Wells D, Ferrante R, et al. The use of back-up units to enhance the safety of unrelated donor cord blood transplantation. Biol Blood Marrow Transpl. 2012;18:648–51.
doi: 10.1016/j.bbmt.2011.12.588
Atsuta Y, Kanda J, Takanashi M, Morishima Y, Taniguchi S, Takahashi S, et al. Different effects of HLA disparity on transplant outcomes after single-unit cord blood transplantation between pediatric and adult patients with leukemia. Haematologica. 2013;98:814–22.
doi: 10.3324/haematol.2012.076042
Yanada M, Konuma T, Kuwatsuka Y, Kondo T, Kawata T, Takahashi S, et al. Unit selection for umbilical cord blood transplantation for adults with acute myeloid leukemia in complete remission: a Japanese experience. Bone Marrow Transpl. 2019;54:1789–98.
doi: 10.1038/s41409-019-0539-8
Kanda J, Hayashi H, Ruggeri A, Kimura F, Volt F, Takahashi S, et al. Prognostic factors for adult single cord blood transplantation among European and Japanese populations: the Eurocord/ALWP-EBMT and JSHCT/JDCHCT collaborative study. Leukemia. 2020;34:128–37.
doi: 10.1038/s41375-019-0534-5

Auteurs

Gaku Kondo (G)

Japanese Red Cross Tokyo Metropolitan Blood Center, Tokyo, Japan.

Fumihiko Ishimaru (F)

Japanese Red Cross Tokyo Metropolitan Blood Center, Tokyo, Japan. f-ishimaru@ktks.bbc.jrc.or.jp.
Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan. f-ishimaru@ktks.bbc.jrc.or.jp.

Takaaki Konuma (T)

The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

Satoshi Takahashi (S)

The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

Yoshiko Atsuta (Y)

Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya University Graduate School of Medicine, Nagoya, Japan.

Atsuko Ogawa (A)

Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan.

Mutsuko Minemoto (M)

Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan.

Koichi Kashiwase (K)

Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan.

Fumihiro Azuma (F)

Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan.

Miyuki Ito (M)

Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan.

Keiichi Isoyama (K)

Showa University Fujigaoka Hospital, Kanagawa, Japan.

Takeshi Kobayashi (T)

Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.

Kazuteru Ohashi (K)

Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.

Fumiaki Nakajima (F)

Japanese Red Cross Central Blood Institute, Tokyo, Japan.

Kiyoshi Hiruma (K)

Hiruma Clinic, Tokyo, Japan.

Shigeyoshi Makino (S)

Toranomon Hospital, Tokyo, Japan.

Hideo Mugishima (H)

Kawagoe Preventive Medical Center Clinic, Saitama, Japan.

Noriko Namba (N)

Japanese Red Cross Tokyo Metropolitan Blood Center, Tokyo, Japan.

Hirokazu Tsuno (H)

Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan.

Tadashi Nagai (T)

Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan.

Kazuo Muroi (K)

Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan.

Kazunori Nakajima (K)

Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH